CSE 421: Introduction to Algorithms

Graph

Yin-Tat Lee
Trees and Induction

Claim: Show that every tree with $n$ vertices has $n - 1$ edges.

Proof: (Induction on $n$.)
Base Case: $n = 1$, the tree has no edge
Inductive Step: Let $T$ be a tree with $n$ vertices.
So, $T$ has a vertex $v$ of degree 1.
Remove $v$ and the neighboring edge, and let $T'$ be the new graph.
We claim $T'$ is a tree: It has no cycle, and it must be connected.
So, $T'$ has $n - 2$ edges and $T$ has $n - 1$ edges.
Claim: In any undirected graph, the number of edges is equal to \((1/2) \sum_{\text{vertex } v} \deg(v)\)

Pf: \(\sum_{\text{vertex } v} \deg(v)\) counts every edge of the graph exactly twice; once from each end of the edge.

\(|E|=8\)

\[\sum_{\text{vertex } v} \deg(v) = 2 + 2 + 1 + 1 + 3 + 2 + 3 + 2 = 16\]
Exercise: Odd Degree Vertices

**Claim:** In any undirected graph, the number of odd degree vertices is even

**Pf:** In previous claim we showed sum of all vertex degrees is even. So there must be even number of odd degree vertices, because sum of odd number of odd numbers is odd.

4 odd degree vertices
3, 4, 5, 6
Let $G = (V, E)$ be a graph with $n = |V|$ vertices and $m = |E|$ edges.

Claim: $0 \leq m \leq \binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$

Pf: Since every edge connects two distinct vertices (i.e., $G$ has no loops) and no two edges connect the same pair of vertices (i.e., $G$ has no multi-edges) it has at most $\binom{n}{2}$ edges.
Sparse Graphs

A graph is called **sparse** if $m \ll n^2$ and it is called **dense** otherwise.

Sparse graphs are very common in practice

• Friendships in social network
• Planar graphs
• Web graph

$O(n + m)$ is usually much better runtime than $O(n^2)$. 
**Storing Graphs**

Vertex set $V = \{v_1, ..., v_n\}$.

**Adjacency Matrix: $A$**
- For all, $i, j, A[i, j] = 1$ iff $(v_i, v_j) \in E$
- Storage: $n^2$ bits

**Advantage:**
- $O(1)$ test for presence or absence of edges

**Disadvantage:**
- Inefficient for sparse graphs both in storage and edge-access
Storing Graphs

**Adjacency List:**
$O(n + m)$ words

**Advantage**
- Compact for sparse
- Easily see all edges

**Disadvantage**
- Bad memory access
- Not good for parallel algorithms.
Storing Graphs

Adjacency Array:
$O(n + m)$ words

Advantage
• Compact for sparse
• Easily see all edges
• Better for memory access
• Better for parallel algorithms.

Disadvantage
• Difficult to update the graph
Storing Graphs

Implicit Representation:
\( f(ν) \) outputs an iterator of neighbor of \( ν \).
Aka, \( f(ν)\rightarrow \text{next}()\rightarrow \text{next}()\rightarrow \text{next}()\rightarrow \text{next}()\)

Advantage
• No space is required

Disadvantage
• Mainly work for abstractly defined graph

2,125,922,464,947,725,402,112,000 states.
CSE 421: Introduction to Algorithms

Breadth First Search

Yin Tat Lee
Graph Traversal

Walk (via edges) from a fixed starting vertex $s$ to all vertices reachable from $s$.

Applications:
- Web crawling
- Social networking
- Network Broadcasting
- Garbage Collection
- …
Breadth First Search (BFS)

Completely explore the vertices in order of their distance from $s$.

Three states of vertices:

- Undiscovered
- Discovered
- Fully-explored

Naturally implemented using a queue.

The queue will always have the list of Discovered vertices.
BFS implementation

**Initialization**: mark all vertices "undiscovered"

BFS\( (s) \)

1. mark \( s \) discovered
2. queue \( Q = \{s\} \)
3. while \( Q \) is not empty
   - \( u = Q . \text{dequeue}() \)
   - for each edge \( \{u, x\} \)
     - if \( x \) is undiscovered
       - mark \( x \) discovered
       - append \( x \) on \( Q \)
     - \( x \rightarrow \text{parent} = u \)
4. mark \( u \) fully-explored
BFS(1)

Queue:

1
BFS(1)
BFS(1)

Queue: 3 4
BFS(1)

Queue: 5 6 7 8 9
BFS(1)

Queue: 7 8 9 10
BFS(1)

Queue: 8 9 10 11
BFS(1)
BFS(1)

Queue:
BFS Analysis

Initialization: mark all vertices "undiscovered"

BFS($s$)

mark $s$ discovered

queue $Q = \{s\}$

while $Q$ is not empty

$u = Q$.dequeue()

for each edge $\{u, x\}$

if ($x$ is undiscovered)

mark $x$ discovered

append $x$ on $Q$

$x \to$ parent $= u$

mark $u$ fully-explored

$O(n)$ times: At most once per vertex

$O(m)$ times: At most twice per edge
Properties of BFS

- **BFS**(*s*) visits a vertex *v* if and only if there is a path from *s* to *v*

- Edges into then-undiscovered vertices define a tree – the “Breadth First spanning tree” of *G*

- Level *i* in the tree are exactly all vertices *v* s.t., the shortest path (in *G*) from the root *s* to *v* is of length *i*

- All nontree edges join vertices on the same or adjacent levels of the tree
BFS Application: Shortest Paths

BFS Tree gives shortest paths from 1 to all vertices

All edges connect same or adjacent levels
BFS Application: Shortest Paths

BFS Tree gives shortest paths from 1 to all vertices.

All edges connect same or adjacent levels.
Properties of BFS

Claim: All nontree edges join vertices on the same or adjacent levels of the tree

Proof: Consider an edge \( \{x, y\} \)
Say \( x \) is first discovered and it is added to level \( i \).
We show \( y \) will be at level \( i \) or \( i + 1 \)

This is because when vertices incident to \( x \) are considered in the loop, if \( y \) is still undiscovered, it will be discovered and added to level \( i + 1 \).
Properties of BFS

Lemma: All vertices at level $i$ of BFS($s$) have shortest path distance $i$ to $s$.

Claim: If $L(v) = i$ then shortest path $\leq i$

Pf: Because there is a path of length $i$ from $s$ to $v$ in the BFS tree.

Claim: If shortest path $= i$ then $L(v) \leq i$

Pf: If shortest path $= i$, then say $s = v_0, v_1, ..., v_i = v$ is the shortest path to $v$.

By previous claim,

\[
L(v_1) \leq L(v_0) + 1 \\
L(v_2) \leq L(v_1) + 1 \\
\vdots \\
L(v_i) \leq L(v_{i-1}) + 1
\]

So, $L(v_i) \leq i$.

This proves the lemma.
Why Trees?

Trees are simpler than graphs
  Many statements can be proved on trees by induction

So, computational problems on trees are simpler than general graphs

This is often a good way to approach a graph problem:
  • Find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
  • Solve the problem on the tree
  • Use the solution on the tree to find a “good” solution on the graph
CSE 421: Introduction to Algorithms

Application of BFS

Yin Tat Lee
BFS Application: Connected Component

We want to answer the following type questions *(fast)*: Given vertices $u, v$ is there a path from $u$ to $v$ in $G$?

**Idea**: Create an array $A$ such that For all $u$ in the same connected component, $A[u]$ is same.

Therefore, question reduces to If $A[u] = A[v]$?
BFS Application: Connected Component

Initial State: All vertices undiscovered, $c = 0$
For $v = 1$ to $n$ do
  If state($v$) != fully-explored then
    Run BFS($v$)
    Set $A[u] \leftarrow c$ for each $u$ found in BFS($v$)
  $c = c + 1$

Note: We no longer initialize to undiscovered in the BFS subroutine

Total Cost: $O(m + n)$
In every connected component with $n_i$ vertices and $m_i$ edges BFS takes time $O(m_i + n_i)$.

Note: one can use DFS instead of BFS.
Lesson: We can execute any algorithm on disconnected graphs by running it on each connected component.

We can use the previous algorithm to detect connected components. There is no overhead, because the algorithm runs in time $O(m + n)$.

So, from now on, we can (almost) always assume the input graph is connected.
Cycles in Graphs

Claim: If an $n$ vertices graph $G$ has at least $n$ edges, then it has a cycle.

Proof: If $G$ is connected, then it cannot be a tree. Because every tree has $n - 1$ edges. So, it has a cycle.

Suppose $G$ is disconnected. Say connected components of $G$ have $n_1, \ldots, n_k$ vertices where $n_1 + \cdots + n_k = n$

Since $G$ has $\geq n$ edges, there must be some $i$ such that a component has $n_i$ vertices with at least $n_i$ edges.

Therefore, in that component we do not have a tree, so there is a cycle.
Bipartite Graphs

Definition: An undirected graph $G = (V, E)$ is **bipartite** if you can partition the node set into 2 parts (say, blue/red or left/right) so that all edges join nodes in different parts i.e., no edge has both ends in the same part.

Application:
- Scheduling: machine=red, jobs=blue
- Stable Matching: men=blue, wom=red

![A bipartite graph](image)
Testing Bipartiteness

**Problem**: Given a graph $G$, is it bipartite?

Many graph problems become:

- Easier/Tractable if the underlying graph is bipartite (matching)

Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

---

*a bipartite graph $G$*

another drawing of $G$
An Obstruction to Bipartiteness

**Lemma**: If $G$ is bipartite, then it does not contain an odd length cycle.

**Proof**: We cannot 2-color an odd cycle, let alone $G$.

![Bipartite Graph](image1.png)

*bipartite (2-colorable)*

![Non-Bipartite Graph](image2.png)

*not bipartite (not 2-colorable)*
Lemma: Let $G$ be a connected graph, and let $L_0, \ldots, L_k$ be the layers produced by BFS($s$). Exactly one of the following holds.

(i) No edge of $G$ joins two nodes of the same layer, and $G$ is bipartite.

(ii) An edge of $G$ joins two nodes of the same layer, and $G$ contains an odd-length cycle (and hence is not bipartite).
A Characterization of Bipartite Graphs

Lemma: Let \( G \) be a connected graph, and let \( L_0, \ldots, L_k \) be the layers produced by BFS\((s)\). Exactly one of the following holds.

(i) No edge of \( G \) joins two nodes of the same layer, and \( G \) is bipartite.

(ii) An edge of \( G \) joins two nodes of the same layer, and \( G \) contains an odd-length cycle (and hence is not bipartite).

Proof. (i)

Suppose no edge joins two nodes in the same layer.

By previous lemma, all edges join nodes on adjacent levels.

Case (i)

Bipartition:

\[
\begin{align*}
\text{blue} &= \text{nodes on odd levels}, \\
\text{red} &= \text{nodes on even levels}.
\end{align*}
\]
A Characterization of Bipartite Graphs

**Lemma**: Let $G$ be a connected graph, and let $L_0, \ldots, L_k$ be the layers produced by BFS($s$). Exactly one of the following holds.

(i) No edge of $G$ joins two nodes of the same layer, and $G$ is bipartite.

(ii) An edge of $G$ joins two nodes of the same layer, and $G$ contains an odd-length cycle (and hence is not bipartite).

**Proof.** (ii)

Suppose $\{x, y\}$ is an edge & $x, y$ in same level $L_j$. Let $z = \text{their lowest common ancestor in BFS tree}$. Let $L_i$ be level containing $z$.

Consider cycle that takes edge from $x$ to $y$, then tree from $y$ to $z$, then tree from $z$ to $x$.

Its length is $1 + (j - i) + (j - i)$, which is odd.
Obstruction to Bipartiteness

**Corollary**: A graph $G$ is bipartite if and only if it contains no odd length cycles. Furthermore, one can test bipartiteness using BFS.

*bipartite* \( \text{(2-colorable)} \)

*not bipartite* \( \text{(not 2-colorable)} \)