CSE 421: Introduction to Algorithms

Complexity

Yin-Tat Lee
Definition for Efficiency in this course

Worst case complexity:
The worst case running time $T(n)$ of an algorithm is max # steps algorithm takes on any input of size n.

Definition of 1 step in this course:
• only simple operations (+, *, -, =, if, call, …).
• each operation takes one time step.
• each memory access takes one time step.
• no fancy stuff (add two matrices, copy long string, …).

Definition of efficiency in this course:
An algorithm is efficient if it has polynomial worst case runtime.
Time Complexity on Worst Case Inputs

\[T(N) = 2N \log_2 N \]

\[T(N) = N \log_2 N \]
O-Notation

Given two positive functions f and g

- $f(n) = O(g(n))$ if there is a constant $C > 0$ and N such that $f(n) \leq C g(n)$ for all $n > N$

- $f(n) = \Omega(g(n))$ if there is a constant $C > 0$ and N such that $f(n) \geq C g(n)$ for all $n > N$

- $f(n) = \Theta(g(n))$ if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$, namely there is a constant $C_1, C_2 > 0$ and N such that $C_1 g(n) \leq f(n) \leq C_2 g(n)$ for all $n > N$
Common Asymptotic Bounds

- **Polynomials:**
 \[a_0 + a_1 n + \cdots + a_d n^d \text{ is } O(n^d) \]

- **Logarithms:**
 \[\log_a n = \Theta(\log_b n) \text{ for all constants } a, b > 0 \]

- **Logarithms:** log grows slower than every polynomial
 For all \(x > 0 \), \(\log n = O(n^x) \)

- \(n \log n = O(n^{1.01}) \)
Running Time

An algorithm runs in polynomial time if $T(n) = n^{O(1)}$. Equivalently, $T(n) = O(n^d)$ for some constant d.

<table>
<thead>
<tr>
<th>Name</th>
<th>Complexity class</th>
<th>Running time $T(n)$</th>
<th>Examples of running times</th>
<th>Example algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant time</td>
<td>$O(1)$</td>
<td></td>
<td>10</td>
<td>Determining if an integer (represented in binary) is even or odd</td>
</tr>
<tr>
<td>inverse Ackermann time</td>
<td>$O(a(n))$</td>
<td></td>
<td></td>
<td>Amortized time per operation using a disjoint set</td>
</tr>
<tr>
<td>iterated logarithmic time</td>
<td>$O(\log^* n)$</td>
<td></td>
<td></td>
<td>Distributed coloring of cycles</td>
</tr>
<tr>
<td>log-logarithmic</td>
<td>$O(\log \log n)$</td>
<td></td>
<td></td>
<td>Amortized time per operation using a bounded priority queue2</td>
</tr>
<tr>
<td>logarithmic time</td>
<td>DLOGTIME</td>
<td>$O(\log n)$</td>
<td>$\log n, \log(n^2)$</td>
<td>Binary search</td>
</tr>
<tr>
<td>polylogarithmic time</td>
<td>$\text{poly}(\log n)$</td>
<td>$\log n^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fractional power</td>
<td>$O(n^c)$ where $0 < c < 1$</td>
<td>$n^{1/2}, n^{2/3}$</td>
<td>Searching in a kd-tree</td>
<td></td>
</tr>
<tr>
<td>linear time</td>
<td>$O(n)$</td>
<td></td>
<td>n</td>
<td>Finding the smallest or largest item in an unsorted array</td>
</tr>
<tr>
<td>"n log log n" time</td>
<td>$O(n \log^* n)$</td>
<td></td>
<td></td>
<td>Seidel's polygon triangulation algorithm.</td>
</tr>
<tr>
<td>quasilinear time</td>
<td>$O(n \log n)$</td>
<td></td>
<td>$n \log n, \log n!$</td>
<td>Fastest possible comparison sort; Fast Fourier transform.</td>
</tr>
<tr>
<td>quadratic time</td>
<td>$O(n^2)$</td>
<td></td>
<td>n^2</td>
<td>Bubble sort; Insertion sort; Direct convolution</td>
</tr>
<tr>
<td>cubic time</td>
<td>$O(n^3)$</td>
<td></td>
<td>n^3</td>
<td>Naive multiplication of two $n \times n$ matrices. Calculating partial correlation.</td>
</tr>
<tr>
<td>polynomial time</td>
<td>P</td>
<td>$2^{O(\log n)} = \text{poly}(n)$</td>
<td>$n, n \log n, n^{10}$</td>
<td>Karmarkar's algorithm for linear programming; AKS primality test</td>
</tr>
<tr>
<td>quasi-polynomial time</td>
<td>QP</td>
<td>$2^{\text{poly}(\log n)}$</td>
<td>$n^{\log \log n}, n^{\log n}$</td>
<td>Best-known $O(\log^2 n)$-approximation algorithm for the directed Steiner tree problem.</td>
</tr>
<tr>
<td>sub-exponential time (first definition)</td>
<td>SUBEXP</td>
<td>$O(2^{\sqrt{n}})$ for all $\varepsilon > 0$</td>
<td>$O(2^{\log n \log \log n})$</td>
<td>Assuming complexity theoretic conjectures, BPP is contained in SUBEXP.3</td>
</tr>
<tr>
<td>sub-exponential time (second definition)</td>
<td></td>
<td>$2^{o(n)}$</td>
<td>$2^{n^{1/3}}$</td>
<td>Best-known algorithm for integer factorization, graph isomorphism.</td>
</tr>
<tr>
<td>exponential time (with linear exponent)</td>
<td>E</td>
<td>$2^{O(n)}$</td>
<td>$1.1^n, 10^n$</td>
<td>Solving the traveling salesman problem using dynamic programming</td>
</tr>
<tr>
<td>exponential time</td>
<td>EXPTIME</td>
<td>$2^{\text{poly}(n)}$</td>
<td>$2^n, 2^{n^2}$</td>
<td>Solving matrix chain multiplication via brute-force search</td>
</tr>
<tr>
<td>factorial time</td>
<td>$O(n!)$</td>
<td></td>
<td>$n!$</td>
<td>Solving the traveling salesman problem via brute-force search</td>
</tr>
<tr>
<td>double exponential time</td>
<td>2-EXPTIME</td>
<td>$2^{\text{poly}(n)}$</td>
<td>2^{2^n}</td>
<td>Deciding the truth of a given statement in Presburger arithmetic</td>
</tr>
</tbody>
</table>
Why it matters?

Suppose we can do 1 million operations per second.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

not only get very big, but do so *abruptly*, which likely yields erratic performance on small instances.

Update: RTX 2080 Ti do 13.4 Tflops/sec (1.3×10^{13})
It brings down the 31,710 years to 20 hour.
However, 2^{100} operations still takes billions of years.
Why “Polynomial”?

Point is not that n^{2000} is a practical bound, or that the differences among n and $2n$ and n^2 are negligible. Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.

- “My problem is in P” is a starting point for a more detailed analysis
- “My problem is not in P” may suggest that you need to shift to a more tractable variant
Other Complexities

Average Case Complexity:
\[\text{avg} \] # steps algorithm takes

Communication Complexity:
\[\text{max} \] # communication algorithm send between servers

Space Complexity:
\[\text{max} \] # space algorithm needs

Parallel Complexity:
\[\text{max} \] length of the longest series of operations that have to be performed sequentially due to data dependencies

Energy Complexity: …

Landauer's principle: Take at least \(10^{-21} \) J to erase a bit in room temp. (Current specialized hardware takes around \(10^{-15} \) J.)
In Class Exercise

Arrange in the increasing order of asymptotic growth:

- $n^{5/3}$.
- $n \sqrt{n \log n}$.
- $n \log^{11} n$.
- $n 2^{\sqrt{\frac{\log n}{\log \log n}}}$.
- n^3.

Different ways to solve maxflow. Will explain one of them this quarter.
CSE 421: Introduction to Algorithms

Graph

Yin-Tat Lee
Graphs

Examples:
- Transportation networks
- Communication networks
- Internet
- Social networks
- Dependency networks
Undirected Graphs $G=(V,E)$

Disconnected graph
Multi edges
Isolated vertices
Self loop
Graphs don’t Live in Flat Land

Geometrical drawing is mentally convenient, but mathematically irrelevant:

4 drawings of a single graph:
Terminology

- **Degree of a vertex**: # edges that touch that vertex

 \[\text{deg}(6) = 3 \]

- **Connected**: Graph is connected if there is a path between every two vertices

- **Connected component**: Maximal set of connected vertices
Terminology (cont’d)

- **Path**: A sequence of distinct vertices s.t. each vertex is connected to the next vertex with an edge.

- **Cycle**: Path of length > 2 that has the same start and end.

- **Tree**: A connected graph with no cycles.
Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1 (Every tree has a leaf)

Proof: (By contradiction)

Suppose every vertex has degree ≥ 2.

Start from a vertex v_1 and follow a path, $v_1, ..., v_i$ when we are at v_i we choose the next vertex to be different from v_{i-1}. We can do so because $\deg(v_i) \geq 2$.

The first time that we see a repeated vertex ($v_j = v_i$) we get a cycle.

We always get a repeated vertex because G has finitely many vertices.
Claim: Show that every tree with n vertices has $n - 1$ edges.

Proof: (Induction on n.)

Base Case: $n = 1$, the tree has no edge.

Inductive Step: Let T be a tree with n vertices.

So, T has a vertex v of degree 1.

Remove v and the neighboring edge, and let T' be the new graph.

We claim T' is a tree: It has no cycle, and it must be connected.

So, T' has $n - 2$ edges and T has $n - 1$ edges.
Exercise: Degree Sum

Claim: In any undirected graph, the number of edges is equal to \((1/2) \sum_{\text{vertex } v} \deg(v)\)

Pf: \(\sum_{\text{vertex } v} \deg(v)\) counts every edge of the graph exactly twice; once from each end of the edge.

\[|E| = 8\]

\[\sum_{\text{vertex } v} \deg(v) = 2 + 2 + 1 + 1 + 3 + 2 + 3 + 2 = 16\]
Exercise: Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree vertices is even

Pf: In previous claim we showed sum of all vertex degrees is even. So there must be even number of odd degree vertices, because sum of odd number of odd numbers is odd.

4 odd degree vertices 3, 4, 5, 6
Let $G = (V, E)$ be a graph with $n = |V|$ vertices and $m = |E|$ edges.

Claim: $0 \leq m \leq \binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$

Pf: Since every edge connects two distinct vertices (i.e., G has no loops) and no two edges connect the same pair of vertices (i.e., G has no multi-edges) it has at most $\binom{n}{2}$ edges.
Sparse Graphs

A graph is called **sparse** if $m \ll n^2$ and it is called **dense** otherwise.

Sparse graphs are very common in practice

- Friendships in social network
- Planar graphs
- Web graph

Q: Which is a better running time $O(n + m)$ vs $O(n^2)$?

A: $O(n + m) = O(n^2)$, but $O(n + m)$ is usually much better.
Storing Graphs (Internally in ALG)

Vertex set \(V = \{v_1, \ldots, v_n\} \).

Adjacency Matrix: \(A \)

- For all, \(i, j, A[i, j] = 1 \) iff \((v_i, v_j) \in E\)
- Storage: \(n^2 \) bits

Advantage:

- \(O(1) \) test for presence or absence of edges

Disadvantage:

- Inefficient for sparse graphs both in storage and edge-access
Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure

If $O(1)$ edge test is needed, one can use a hash table.