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Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all 
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

(See CSE 431 for the proof)

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like 
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤𝑝 𝐵 and 𝐵 ≤𝑝 𝐶 then, 𝐴 ≤𝑝 𝐶
Pf: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤𝑝 Independent set, then Independent 
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤𝑝 Independent Set ≤𝑝 Vertex Cover ≤𝑝 Set Cover
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Steps to Proving

Problem B is NP-complete

• Show B is NP-hard:  

State: ”Reduction is from NP-hard Problem A”

Show what the map f is

Argue that f is polynomial time

Argue correctness:  two directions Yes for A
implies Yes for B and vice versa. 

• Show B is in NP

State what hint/certificate is and why it works

Argue that it is polynomial-time to check.
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Is NP-complete as bad as it gets?

• NO!  NP-complete problems are frequently 

encountered, but there are worse:

Some problems provably require exponential 

time.

• Ex: Does M halt on input x in 2|x| steps?

Some require                              steps

And some are just plain uncomputable

nn 2n 2 22 , 2 , 2 , ...



3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say k is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k be the # of clauses.

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3
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Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size k

Given a satisfying assignment, Choose one node from each clause 
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=k 6
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Correctness of 3-SAT ≤𝑝 Indep Set 

An independent set of size k => A satisfying assignment

Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3
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Yet another example of NP completeness
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Prove that Super Mario Bros is NP-complete.

What do we need to show?

• The problem is in NP.

• Some NP complete problem is easier than Super Mario.

Approach:

• 3SAT ≤𝑃 Super Mario



Yet another example of NP completeness
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We ignore the following issues:

• Need to consider the “crossing” coz the level is 2-D.

• Assume Mario can go both left or right.

Given a 3SAT, we need to create a level.
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Question 1: How to create this part?
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Question 2: How to create this part?
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So, what you need to prove?

• If the 3SAT is satisfiable, then indeed the level is solvable.

Usually, this part is easy. This is basically due to the design of 
your reduction.

• If the level is solvable, then the 3SAT is satisfiable

This part usually requires more argument. Need to prove no 
tricky way to solve the problem without solving the 3SAT.
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More NP-completeness

• Subset-Sum problem

(Decision version of Knapsack)
• Given n integers w1,…,wn and integer W

• Is there a subset of the n input integers that adds 

up to exactly W?

• O(nW) solution from dynamic programming but if 

W and each wi can be n bits long then this is 

exponential time
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3-SAT PSubset-Sum

• Given a 3-CNF formula with m clauses 
and n variables

• Will create 2m+2n numbers that are m+n
digits long

Two numbers for each variable xi

• ti and fi (corresponding to xi being true or xi being 
false)

Two extra numbers for each clause
• uj and vj (filler variables to handle number of false 

literals in clause Cj)
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3-SAT PSubset-Sum

1 2 3 4 …  n  1 2 3 4 … m

i                   j

1 0 0 0 …  0  0 0 1 0 … 1

1 0 0 0 …  0  1 0 0 1 … 0

0 1 0 0 …  0  0 1 0 0 … 1

0 0 0 0 …  0  1 0 0 0 … 0

0 1 0 0 …  0  0 0 1 1 … 0

t1

f2

t2

f1

C3=(x1 x2 x5)

…          ….

u1=v1

0 0 0 0 …  0  0 1 0 0 … 0u2=v2

…          ….

1 1 1 1 …  1  3 3 3 3 … 3W
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Graph Colorability

• Defn: Given a graph G=(V,E), and an integer k, 
a k-coloring of G is

an assignment of up to k different colors to the vertices 
of G so that the endpoints of each edge have 
different colors.

• 3-Color: Given a graph G=(V,E), does G have a 
3-coloring?

• Claim: 3-Color is NP-complete

• Proof: 3-Color is in NP:
Hint is an assignment of red,green,blue to the vertices 

of G

Easy to check that each edge is colored correctly
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3-SAT P3-Color

• Reduction:

We want to map a 3-CNF formula F to a graph 

G so that

• G is 3-colorable iff F is satisfiable
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3-SAT P3-Color

O

TF

Base Triangle
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3-SAT P3-Color

O

TF

x1

x1

x2

xn

...
x2

xn

Variable Part: 

in 3-coloring, variable

colors correspond to

some truth assignment 

(same color as T or F)
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3-SAT P3-Color

O

TF

x1

x1

x2

xn

...
x2

xn

Clause Part:  
Add one 6 vertex gadget per clause  connecting 

its ‘outer vertices’ to the literals in the clause
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3-SAT P3-Color

Any truth assignment satisfying the formula 

can be extended to a 3-coloring of the graph

F

O

O

T
F

O

O

TF

x1

x1

x2

xn

...
x2

xn
T

F/T

F/T
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3-SAT P3-Color

Any 3-coloring of the graph colors

each gadget triangle using each color

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn
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3-SAT P3-Color

Any 3-coloring of the graph has an F opposite

the O color in the triangle of each gadget

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F
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3-SAT P3-Color

Any 3-coloring of the graph has T at the

other end of the blue edge connected to the F

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F

T


