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Approximation Algorithm
An algorithm has an approximation ratio a(n) If

Cost of computed solution

<
Cost of the optimum a(n)

for any input of length n. (worst case)

Goal: For every NP-hard problem, find a polynomial-time
approximation algorithm with the best possible
approximation ratio.

Getting a guarantee on the approximation ratio is inherently
tricky! Many methods to do so: we'll see one example today.
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The Set Cover Problem
Applications : Company wants to hire people
such that all required skills covered; "Fuzz’
testing in software development;
Manufacturer wants to get all items from
differe pliers-at-minimum_cost




The Set Cover Problem

Example 1

Optimal set cover =4




A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered




A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered




A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered




A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered




A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered




Greedy Algorithm

Example 2

S =11,2,3,8,9,10},
S, =11,2,3,4,5},

S; =14,5,7},

S, =15,6,7},

S =1{6,7,8,9,10}.



Greedy Algorithm

Example 2

S, =1{1,2,3,8,9,10},
S, =11,2,3,4,5},

S3 =1{4,5,7},
S,=1567}

S =1{6,7,8,9,10}.



Greedy Algorithm

Example 2

S, =1{1,2,3,8,9,10},
S, =11,2,3,4,5},

S3 =14,5,7},
S,=1567}

S =1{6,7,8,9,10}.



Greedy Algorithm

Example 2

S, =1{1,2,3,8,9,10},
S, =11,2,3,4,5},

S3 =14,5,7},
S,=1567}

S =1{6,7,8,9,10}.



Greedy Algorithm

Example 2

S, =1{1,2,3,8,9,10},
S, =11,2,3,4,5},

S; =14,5,7},

S, =15,6,7},

S =1{6,7,8,9,10}.

Is this the optimal solution?



How well did Greedy do In this case?
Example 2
S, ={1,2,3,8,9,10},
S, =1{1,2,3,4,5},
S3 = 4,5,7},
S, =1{5,6,7}
S =16,7,8,9,10}.

Greedy: 3
Optimum: 2



A Really Bad Example for Greedy
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Greedy =5 OPT =2

o




Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.



Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements.



Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.



Greedy gives O(log(n)) approximation
Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set chosen:
n, <n-n/k =nl-1/k)



Greedy gives O(log(n)) approximation
Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements



Greedy gives O(log(n)) approximation
Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.



Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left uncovered: n, < n, (1 —-1/(k — 1))



Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left uncovered: n, < n, (1 —-1/(k — 1))



Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left: n, < n(1- 1/k)(1 —-1/(k—1))



Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left: n, < n(1- 1/k)(1 —1/k)



Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left: n, < n(1- 1/k)?



Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

In general, number of elements left: n, < n(1- 1/k)



Greedy gives O(log(n)) approximation
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Pf: Since OPT = k, there exists a set that covers at least 1/k
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Useful upper bound: for all real x, we have 1+ x < e”*. (Lots
of proofs exist for this; a simple one is using the Taylor
expansion of e*.)
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Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.
In general, number of elements left: n;, < ne «

So after i = klnn steps, # uncovered elements < 1.
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Approximation Algorithm Summary

* The best known approximation algorithm for set cover is
the greedy.

— Itis NP-Complete to obtain better than In(n) approximation ratio
for set cover.

* The best known approximation algorithm for vertex cover
IS the greedy.

— It has been open for 40 years to obtain a polynomial time
algorithm with approximation ratio better than 2

* There is a long list of problems for which we do not know
the best approximation algorithms! Very active area of
research (including in our Theory group!)



