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Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman 
Problem, Vertex Cover, Set Cover, Graph Colouring, … 

Cannot find optimum solutions in polynomial time. Instead:

• Find (in polynomial time) the optimum solution of special 
cases (e.g., random inputs)

• Find  (in polynomial time) a solution guaranteed to be 
close to optimal: Approximation Algorithm

How to deal with NP-complete problems
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An algorithm has an approximation ratio 𝛼(𝑛) if

Cost of computed solution

Cost of the optimum
≤ 𝛼(𝑛)

for any input of length 𝑛. (worst case)

Goal: For every NP-hard problem, find a polynomial-time 

approximation algorithm with the best possible 

approximation ratio.

Getting a guarantee on the approximation ratio is inherently 

tricky! Many methods to do so: we’ll see one example today.
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The Set Cover Problem
Applications : Company wants to hire people 
such that all required skills covered; “Fuzz” 
testing in software development; 
Manufacturer wants to get all items from 
different suppliers at minimum cost 



The Set Cover Problem

Optimal set cover = 4

Example 1
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𝑆1 = 1, 2, 3, 8, 9, 10 ,

𝑆2 = 1, 2, 3, 4, 5 ,

𝑆3 = 4, 5, 7 ,

𝑆4 = 5, 6, 7 ,

𝑆5 = 6, 7, 8, 9, 10 .

Is this the optimal solution? 
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Example 2

𝑆1 = 1, 2, 3, 8, 9, 10 ,

𝑆2 = 1, 2, 3, 4, 5 ,

𝑆3 = 4, 5, 7 ,

𝑆4 = 5, 6, 7 ,

𝑆5 = 6, 7, 8, 9, 10 .

Greedy: 3

Optimum: 2

How well did Greedy do in this case?
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A Really Bad Example for Greedy

OPT = 2Greedy = 5
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Approximation Algorithm Summary

• The best known approximation algorithm for set cover is 
the greedy.

– It is NP-Complete to obtain better than ln(n) approximation ratio 
for set cover. 

• The best known approximation algorithm for vertex cover 
is the greedy. 

– It has been open for 40 years to obtain a polynomial time 
algorithm with approximation ratio better than 2

• There is a long list of problems for which we do not know 
the best approximation algorithms! Very active area of 
research (including in our Theory group!)


