CSE 421

Approximation Algorithms: Set Cover

(substituting for Yin Tat Lee)
Approximation Algorithms
How to deal with NP-complete problems

Many fundamental problems in computer science NP-complete: SAT, Independent Set, Travelling Salesman Problem, Vertex Cover, Set Cover, Graph Colouring, …
How to deal with NP-complete problems

Many fundamental problems in computer science NP-complete: SAT, Independent Set, Travelling Salesman Problem, Vertex Cover, Set Cover, Graph Colouring, …

Cannot find optimum solutions in polynomial time.
How to deal with NP-complete problems

Many fundamental problems in computer science NP-complete: SAT, Independent Set, Travelling Salesman Problem, Vertex Cover, Set Cover, Graph Colouring, …

Cannot find optimum solutions in polynomial time. Instead:

• Find (in polynomial time) the optimum solution of special cases (e.g., random inputs)
How to deal with NP-complete problems

Many fundamental problems in computer science NP-complete: SAT, Independent Set, Travelling Salesman Problem, Vertex Cover, Set Cover, Graph Colouring, …

Cannot find optimum solutions in polynomial time. Instead:

- Find (in polynomial time) the optimum solution of special cases (e.g., random inputs)
- Find (in polynomial time) a solution guaranteed to be close to optimal
Many fundamental problems in computer science NP-complete: SAT, Independent Set, Travelling Salesman Problem, Vertex Cover, Set Cover, Graph Colouring, …

Cannot find optimum solutions in polynomial time. Instead:

- Find (in polynomial time) the optimum solution of special cases (e.g., random inputs)

- Find (in polynomial time) a solution guaranteed to be close to optimal: Approximation Algorithm
Approximation Algorithm

An algorithm has an approximation ratio $\alpha(n)$ if

$$\frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \leq \alpha(n)$$

for any input of length n. (worst case)
Approximation Algorithm

An algorithm has an approximation ratio $\alpha(n)$ if

$$\frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \leq \alpha(n)$$

for any input of length n. (worst case)

Goal: For every NP-hard problem, find a polynomial-time approximation algorithm with the best possible approximation ratio.
Approximation Algorithm

An algorithm has an approximation ratio $\alpha(n)$ if

\[
\frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \leq \alpha(n)
\]

for any input of length n. (worst case)

Goal: For every NP-hard problem, find a polynomial-time approximation algorithm with the best possible approximation ratio.

Getting a guarantee on the approximation ratio is inherently tricky!
Approximation Algorithm

An algorithm has an approximation ratio \(\alpha(n) \) if

\[
\frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \leq \alpha(n)
\]

for any input of length \(n \). (worst case)

Goal: For every NP-hard problem, find a polynomial-time approximation algorithm with the best possible approximation ratio.

Getting a guarantee on the approximation ratio is inherently tricky!
Approximation Algorithm

An algorithm has an approximation ratio $\alpha(n)$ if

$$\frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \leq \alpha(n)$$

for any input of length n. (worst case)

Goal: For every NP-hard problem, find a polynomial-time approximation algorithm with the best possible approximation ratio.

Getting a guarantee on the approximation ratio is inherently tricky! Many methods to do so: we’ll see one example today.
The Set Cover Problem

Problem Statement: Given a set \(U \) of \(n \) elements, a collection \(S_1, S_2, \ldots, S_m \) of subsets of \(U \), find the smallest collection of these sets whose union is \(U \).
The Set Cover Problem

Problem Statement: Given a set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, find the smallest collection of these sets whose union is U.
The Set Cover Problem

Applications: Company wants to hire people such that all required skills covered;
The Set Cover Problem

Applications: Company wants to hire people such that all required skills covered; “Fuzz” testing in software development;
The Set Cover Problem

Applications: Company wants to hire people such that all required skills covered; “Fuzz” testing in software development; Manufacturer wants to get all items from different suppliers at minimum cost
The Set Cover Problem

Example 1

Optimal set cover = 4
A Greedy Algorithm

Pick the set that maximizes the number of new elements covered
A Greedy Algorithm

Pick the set that maximizes the number of new elements covered
A Greedy Algorithm

Pick the set that maximizes the number of new elements covered
A Greedy Algorithm

Pick the set that maximizes the number of new elements covered
A Greedy Algorithm

Pick the set that maximizes the number of new elements covered
Example 2

$S_1 = \{1, 2, 3, 8, 9, 10\}$,
$S_2 = \{1, 2, 3, 4, 5\}$,
$S_3 = \{4, 5, 7\}$,
$S_4 = \{5, 6, 7\}$,
$S_5 = \{6, 7, 8, 9, 10\}$.
Greedy Algorithm

Example 2

$S_1 = \{1, 2, 3, 8, 9, 10\}$,
$S_2 = \{1, 2, 3, 4, 5\}$,
$S_3 = \{4, 5, 7\}$,
$S_4 = \{5, 6, 7\}$,
$S_5 = \{6, 7, 8, 9, 10\}$.
Greedy Algorithm

Example 2

\[S_1 = \{1, 2, 3, 8, 9, 10\}, \]
\[S_2 = \{1, 2, 3, 4, 5\}, \]
\[S_3 = \{4, 5, 7\}, \]
\[S_4 = \{5, 6, 7\}, \]
\[S_5 = \{6, 7, 8, 9, 10\}. \]
Greedy Algorithm

Example 2

\begin{align*}
S_1 &= \{1, 2, 3, 8, 9, 10\}, \\
S_2 &= \{1, 2, 3, 4, 5\}, \\
S_3 &= \{4, 5, 7\}, \\
S_4 &= \{5, 6, 7\}, \\
S_5 &= \{6, 7, 8, 9, 10\}.
\end{align*}
Greedy Algorithm

Example 2

\[S_1 = \{1, 2, 3, 8, 9, 10\}, \]
\[S_2 = \{1, 2, 3, 4, 5\}, \]
\[S_3 = \{4, 5, 7\}, \]
\[S_4 = \{5, 6, 7\}, \]
\[S_5 = \{6, 7, 8, 9, 10\}. \]

Is this the optimal solution?
How well did Greedy do in this case?

Example 2

$S_1 = \{1, 2, 3, 8, 9, 10\}$,
$S_2 = \{1, 2, 3, 4, 5\}$,
$S_3 = \{4, 5, 7\}$,
$S_4 = \{5, 6, 7\}$,
$S_5 = \{6, 7, 8, 9, 10\}$.

Greedy: 3
Optimum: 2
A Really Bad Example for Greedy

Greedy = 5

OPT = 2
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements.
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set chosen:

$$n_1 \leq n - n/k = n(1 - 1/k)$$
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements
Greedy gives \(O(\log(n)) \) approximation

Thm: If \(OPT = k \), greedy finds at most \(k \ln(n) \) sets.

Pf: Since \(OPT = k \), there exists a set that covers at least \(1/k \) of the remaining elements. If not, \(OPT > k \).

Number of elements left after first set: \(n_1 \leq n(1 - 1/k) \)

Need to cover \(n_1 \) elements. There exists a set with at least \(n_1/(k - 1) \) elements, otherwise \(OPT > k \).
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

Number of elements left uncovered: $n_2 \leq n_1(1 - 1/(k - 1))$
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

Number of elements left uncovered: $n_2 \leq n_1(1 - 1/(k - 1))$
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

Number of elements left: $n_2 \leq n(1 - 1/k)(1 - 1/(k - 1))$
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

Number of elements left: $n_2 \leq n(1 - 1/k)(1 - 1/k)$
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

Number of elements left: $n_2 \leq n(1 - 1/k)^2$
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

In general, number of elements left: $n_i \leq n(1 - 1/k)^i$
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

Useful upper bound: for all real x, we have $1 + x \leq e^x$. (Lots of proofs exist for this; a simple one is using the Taylor expansion of e^x.)
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

In general, number of elements left: $n_i \leq n(1 - 1/k)^i \leq ne^{-i/k}$
Greedy gives $O(\log(n))$ approximation

Thm: If $OPT = k$, greedy finds at most $k \ln(n)$ sets.

Pf: Since $OPT = k$, there exists a set that covers at least $1/k$ of the remaining elements. If not, $OPT > k$.

Number of elements left after first set: $n_1 \leq n(1 - 1/k)$

Need to cover n_1 elements. There exists a set with at least $n_1/(k - 1)$ elements, otherwise $OPT > k$.

In general, number of elements left: $n_i \leq ne^{-\frac{i}{k}}$

So after $i = k \ln n$ steps, # uncovered elements < 1.
Approximation Algorithm Summary

- The best known approximation algorithm for set cover is the greedy.
 - It is NP-Complete to obtain better than $\ln(n)$ approximation ratio for set cover.
Approximation Algorithm Summary

• The best known approximation algorithm for set cover is the greedy.
 – It is NP-Complete to obtain better than $\ln(n)$ approximation ratio for set cover.

• The best known approximation algorithm for vertex cover is the greedy.
 – It has been open for 40 years to obtain a polynomial time algorithm with approximation ratio better than 2
Approximation Algorithm Summary

• The best known approximation algorithm for set cover is the greedy.
 – It is NP-Complete to obtain better than $\ln(n)$ approximation ratio for set cover.

• The best known approximation algorithm for vertex cover is the greedy.
 – It has been open for 40 years to obtain a polynomial time algorithm with approximation ratio better than 2

• There is a long list of problems for which we do not know the best approximation algorithms! Very active area of research (including in our Theory group!)