
CSE 421

Approximation Algorithms:

Set Cover

(substituting for Yin Tat Lee)

1

Approximation Algorithms

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, …

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, …

Cannot find optimum solutions in polynomial time.

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, …

Cannot find optimum solutions in polynomial time. Instead:

• Find (in polynomial time) the optimum solution of special
cases (e.g., random inputs)

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, …

Cannot find optimum solutions in polynomial time. Instead:

• Find (in polynomial time) the optimum solution of special
cases (e.g., random inputs)

• Find (in polynomial time) a solution guaranteed to be
close to optimal

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, …

Cannot find optimum solutions in polynomial time. Instead:

• Find (in polynomial time) the optimum solution of special
cases (e.g., random inputs)

• Find (in polynomial time) a solution guaranteed to be
close to optimal: Approximation Algorithm

How to deal with NP-complete problems

An algorithm has an approximation ratio 𝛼(𝑛) if

Cost of computed solution

Cost of the optimum
≤ 𝛼(𝑛)

for any input of length 𝑛. (worst case)

Approximation Algorithm

An algorithm has an approximation ratio 𝛼(𝑛) if

Cost of computed solution

Cost of the optimum
≤ 𝛼(𝑛)

for any input of length 𝑛. (worst case)

Goal: For every NP-hard problem, find a polynomial-time

approximation algorithm with the best possible

approximation ratio.

Approximation Algorithm

An algorithm has an approximation ratio 𝛼(𝑛) if

Cost of computed solution

Cost of the optimum
≤ 𝛼(𝑛)

for any input of length 𝑛. (worst case)

Goal: For every NP-hard problem, find a polynomial-time

approximation algorithm with the best possible

approximation ratio.

Getting a guarantee on the approximation ratio is inherently

tricky!

Approximation Algorithm

An algorithm has an approximation ratio 𝛼(𝑛) if

Cost of computed solution

Cost of the optimum
≤ 𝛼(𝑛)

for any input of length 𝑛. (worst case)

Goal: For every NP-hard problem, find a polynomial-time

approximation algorithm with the best possible

approximation ratio.

Getting a guarantee on the approximation ratio is inherently

tricky!

Approximation Algorithm

An algorithm has an approximation ratio 𝛼(𝑛) if

Cost of computed solution

Cost of the optimum
≤ 𝛼(𝑛)

for any input of length 𝑛. (worst case)

Goal: For every NP-hard problem, find a polynomial-time

approximation algorithm with the best possible

approximation ratio.

Getting a guarantee on the approximation ratio is inherently

tricky! Many methods to do so: we’ll see one example today.

Approximation Algorithm

The Set Cover Problem

Problem Statement: Given a set 𝑈 of 𝑛 elements, a
collection 𝑆1, 𝑆2, … , 𝑆𝑚 of subsets of 𝑈, find the smallest

collection of these sets whose union is 𝑈.

The Set Cover Problem

Problem Statement: Given a set 𝑈 of 𝑛 elements, a
collection 𝑆1, 𝑆2, … , 𝑆𝑚 of subsets of 𝑈, find the smallest

collection of these sets whose union is 𝑈.

The Set Cover Problem
Applications: Company wants to hire people
such that all required skills covered;

The Set Cover Problem
Applications: Company wants to hire people
such that all required skills covered; “Fuzz”
testing in software development;

The Set Cover Problem
Applications : Company wants to hire people
such that all required skills covered; “Fuzz”
testing in software development;
Manufacturer wants to get all items from
different suppliers at minimum cost

The Set Cover Problem

Optimal set cover = 4

Example 1

A Greedy Algorithm

Pick the set that maximizes the number of new

elements covered

A Greedy Algorithm

Pick the set that maximizes the number of new

elements covered

A Greedy Algorithm

Pick the set that maximizes the number of new

elements covered

A Greedy Algorithm

Pick the set that maximizes the number of new

elements covered

A Greedy Algorithm

Pick the set that maximizes the number of new

elements covered

Example 2

𝑆1 = 1, 2, 3, 8, 9, 10 ,

𝑆2 = 1, 2, 3, 4, 5 ,

𝑆3 = 4, 5, 7 ,

𝑆4 = 5, 6, 7 ,

𝑆5 = 6, 7, 8, 9, 10 .

Greedy Algorithm

Example 2

𝑆1 = 1, 2, 3, 8, 9, 10 ,

𝑆2 = 1, 2, 3, 4, 5 ,

𝑆3 = 4, 5, 7 ,

𝑆4 = 5, 6, 7 ,

𝑆5 = 6, 7, 8, 9, 10 .

Greedy Algorithm

Example 2

𝑆1 = 1, 2, 3, 8, 9, 10 ,

𝑆2 = 1, 2, 3, 4, 5 ,

𝑆3 = 4, 5, 7 ,

𝑆4 = 5, 6, 7 ,

𝑆5 = 6, 7, 8, 9, 10 .

Greedy Algorithm

Example 2

𝑆1 = 1, 2, 3, 8, 9, 10 ,

𝑆2 = 1, 2, 3, 4, 5 ,

𝑆3 = 4, 5, 7 ,

𝑆4 = 5, 6, 7 ,

𝑆5 = 6, 7, 8, 9, 10 .

Greedy Algorithm

Example 2

𝑆1 = 1, 2, 3, 8, 9, 10 ,

𝑆2 = 1, 2, 3, 4, 5 ,

𝑆3 = 4, 5, 7 ,

𝑆4 = 5, 6, 7 ,

𝑆5 = 6, 7, 8, 9, 10 .

Is this the optimal solution?

Greedy Algorithm

Example 2

𝑆1 = 1, 2, 3, 8, 9, 10 ,

𝑆2 = 1, 2, 3, 4, 5 ,

𝑆3 = 4, 5, 7 ,

𝑆4 = 5, 6, 7 ,

𝑆5 = 6, 7, 8, 9, 10 .

Greedy: 3

Optimum: 2

How well did Greedy do in this case?

A Really Bad Example for Greedy

A Really Bad Example for Greedy

A Really Bad Example for Greedy

A Really Bad Example for Greedy

A Really Bad Example for Greedy

A Really Bad Example for Greedy

OPT = 2Greedy = 5

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements.

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set chosen:

𝑛1 ≤ 𝑛 – 𝑛/𝑘 = 𝑛(1 – 1/𝑘)

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

Number of elements left uncovered: 𝑛2 ≤ 𝑛1(1 − 1/(𝑘 − 1))

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

Number of elements left uncovered: 𝑛2 ≤ 𝑛1(1 − 1/(𝑘 − 1))

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

Number of elements left: 𝑛2 ≤ 𝑛(1 – 1/𝑘)(1 − 1/(𝑘 − 1))

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

Number of elements left: 𝑛2 ≤ 𝑛(1 – 1/𝑘)(1 − 1/𝑘)

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

Number of elements left: 𝑛2 ≤ 𝑛(1 – 1/𝑘)2

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

In general, number of elements left: 𝑛𝑖 ≤ 𝑛(1 – 1/𝑘)𝑖

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

Useful upper bound: for all real 𝑥, we have 1 + 𝑥 ≤ 𝑒𝑥 . (Lots
of proofs exist for this; a simple one is using the Taylor
expansion of 𝑒𝑥.)

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

In general, number of elements left: 𝑛𝑖 ≤ 𝑛(1 – 1/𝑘)𝑖 ≤

𝑛𝑒
−
𝑖

𝑘

Greedy gives 𝑂(log(𝑛)) approximation

Thm: If 𝑂𝑃𝑇 = 𝑘, greedy finds at most 𝑘 ln(𝑛) sets.

Pf: Since 𝑂𝑃𝑇 = 𝑘, there exists a set that covers at least 1/𝑘
of the remaining elements. If not, 𝑂𝑃𝑇 > 𝑘.

Number of elements left after first set: 𝑛1 ≤ 𝑛(1 – 1/𝑘)

Need to cover 𝑛1 elements. There exists a set with at least
𝑛1/(𝑘 − 1) elements, otherwise 𝑂𝑃𝑇 > 𝑘.

In general, number of elements left: 𝑛𝑖 ≤ 𝑛𝑒−
𝑖

𝑘

So after i = 𝑘 ln 𝑛 steps, # uncovered elements < 1.

Greedy gives 𝑂(log(𝑛)) approximation

Approximation Algorithm Summary

• The best known approximation algorithm for set cover is
the greedy.

– It is NP-Complete to obtain better than ln(n) approximation ratio
for set cover.

Approximation Algorithm Summary

• The best known approximation algorithm for set cover is
the greedy.

– It is NP-Complete to obtain better than ln(n) approximation ratio
for set cover.

• The best known approximation algorithm for vertex cover
is the greedy.

– It has been open for 40 years to obtain a polynomial time
algorithm with approximation ratio better than 2

Approximation Algorithm Summary

• The best known approximation algorithm for set cover is
the greedy.

– It is NP-Complete to obtain better than ln(n) approximation ratio
for set cover.

• The best known approximation algorithm for vertex cover
is the greedy.

– It has been open for 40 years to obtain a polynomial time
algorithm with approximation ratio better than 2

• There is a long list of problems for which we do not know
the best approximation algorithms! Very active area of
research (including in our Theory group!)

