CSE 421

Approximation Algorithms:
Set Cover

(substituting for Yin Tat Lee)

Approximation Algorithms

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, ...

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, ...

Cannot find optimum solutions in polynomial time.

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, ...

Cannot find optimum solutions in polynomial time. Instead:

* Find (in polynomial time) the optimum solution of special
cases (e.g., random inputs)

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, ...

Cannot find optimum solutions in polynomial time. Instead:

* Find (in polynomial time) the optimum solution of special
cases (e.g., random inputs)

* Find (in polynomial time) a solution guaranteed to be
close to optimal

How to deal with NP-complete problems

Many fundamental problems in computer science NP-
complete: SAT, Independent Set, Travelling Salesman
Problem, Vertex Cover, Set Cover, Graph Colouring, ...

Cannot find optimum solutions in polynomial time. Instead:

* Find (in polynomial time) the optimum solution of special
cases (e.g., random inputs)

* | Find (in polynomial time) a solution guaranteed to be
close to optimal: Approximation_ Algorithm

Approximation Algorithm
An algorithm has an approximation ratio a(n) If

Cost of computed solution

< a(n)

Cost of the optimum

for any input of length n. (worst case)

Approximation Algorithm
An algorithm has an approximation ratio a(n) If

Cost of computed solution

<
Cost of the optimum a(n)

for any input of length n. (worst case)

Goal: For every NP-hard problem, find a polynomial-time
approximation algorithm with the best possible
approximation ratio.

Approximation Algorithm

An algorithm has an approximation ratio a(n) If

Cost of computed solution

< a(n)

Cost of the optimum

for any input of length n. (worst case)

Goal: For every NP-hard problem, find a polynomial-time
approximation algorithm with the best possible
approximation ratio.

Getting a guarantee on the approximation ratio is inherently
tricky!

Approximation Algorithm

An algorithm has an approximation ratio a(n) If

Cost of computed solution

< a(n)

Cost of the optimum

for any input of length n. (worst case)

Goal: For every NP-hard problem, find a polynomial-time
approximation algorithm with the best possible
approximation ratio.

Getting a guarantee on the approximation ratio is inherently
tricky!

Approximation Algorithm
An algorithm has an approximation ratio a(n) If

Cost of computed solution

<
Cost of the optimum a(n)

for any input of length n. (worst case)

Goal: For every NP-hard problem, find a polynomial-time
approximation algorithm with the best possible
approximation ratio.

Getting a guarantee on the approximation ratio is inherently
tricky! Many methods to do so: we'll see one example today.

The Set Cover Problem

Problem Statement: Given a set U of n elements, a
collection §,, S,, ..., S,,, of subsets of U, find the smallest

collection of these sets whose union is U.

The Set Cover Problem

Problem Statement: Given a set U of n elements, a
collection §,, S,, ..., S, of subsets of U, find the smallest

collection of these sets whose union is U.

The Set Cover Problem
Applications: Company wants to hire people
such that all required skills covered,

- The Set Cover Problem
Applications: Company wants to hire people

such that all required skills covered; "Fuzz”
testing in software development;

The Set Cover Problem
Applications : Company wants to hire people
such that all required skills covered; "Fuzz’
testing in software development;
Manufacturer wants to get all items from
differe pliers-at-minimum_cost

The Set Cover Problem

Example 1

Optimal set cover =4

A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered

A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered

A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered

A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered

A Greedy Algorithm

Pick the set that maximizes the number of new
elements covered

Greedy Algorithm

Example 2

S =11,2,3,8,9,10},
S, =11,2,3,4,5},

S; =14,5,7},

S, =15,6,7},

S =1{6,7,8,9,10}.

Greedy Algorithm

Example 2

S, =1{1,2,3,8,9,10},
S, =11,2,3,4,5},

S3 =1{4,5,7},
S,=1567}

S =1{6,7,8,9,10}.

Greedy Algorithm

Example 2

S, =1{1,2,3,8,9,10},
S, =11,2,3,4,5},

S3 =14,5,7},
S,=1567}

S =1{6,7,8,9,10}.

Greedy Algorithm

Example 2

S, =1{1,2,3,8,9,10},
S, =11,2,3,4,5},

S3 =14,5,7},
S,=1567}

S =1{6,7,8,9,10}.

Greedy Algorithm

Example 2

S, =1{1,2,3,8,9,10},
S, =11,2,3,4,5},

S; =14,5,7},

S, =15,6,7},

S =1{6,7,8,9,10}.

Is this the optimal solution?

How well did Greedy do In this case?
Example 2
S, ={1,2,3,8,9,10},
S, =1{1,2,3,4,5},
S3 = 4,5,7},
S, =1{5,6,7}
S =16,7,8,9,10}.

Greedy: 3
Optimum: 2

A Really Bad Example for Greedy

é \f..\(~

.

A Really Bad Example for Greedy

Q000 | 00 | ’

A Really Bad Example for Greedy

A Really Bad Example for Greedy

A Really Bad Example for Greedy

A Really Bad Example for Greedy

Greedy =5 OPT =2

o

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements.

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Greedy gives O(log(n)) approximation
Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set chosen:
n, <n-n/k =nl-1/k)

Greedy gives O(log(n)) approximation
Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements

Greedy gives O(log(n)) approximation
Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left uncovered: n, < n, (1 —-1/(k — 1))

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left uncovered: n, < n, (1 —-1/(k — 1))

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left: n, < n(1- 1/k)(1 —-1/(k—1))

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left: n, < n(1- 1/k)(1 —1/k)

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Number of elements left: n, < n(1- 1/k)?

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

In general, number of elements left: n, < n(1- 1/k)

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

Useful upper bound: for all real x, we have 1+ x < e”*. (Lots
of proofs exist for this; a simple one is using the Taylor
expansion of e*.)

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.

In general, number of elements left: n, < n(1- 1/k)* <

ne k

Greedy gives O(log(n)) approximation

Thm: If OPT = k, greedy finds at most k In(n) sets.

Pf: Since OPT = k, there exists a set that covers at least 1/k
of the remaining elements. If not, OPT > k.

Number of elements left after first set: n, < n(1 - 1/k)

Need to cover n, elements. There exists a set with at least
n,/(k — 1) elements, otherwise OPT > k.
In general, number of elements left: n;, < ne «

So after i = klnn steps, # uncovered elements < 1.

Approximation Algorithm Summary

* The best known approximation algorithm for set cover is
the greedy.

— Itis NP-Complete to obtain better than In(n) approximation ratio
for set cover.

Approximation Algorithm Summary

* The best known approximation algorithm for set cover is
the greedy.

— Itis NP-Complete to obtain better than In(n) approximation ratio
for set cover.

* The best known approximation algorithm for vertex cover
IS the greedy.

— It has been open for 40 years to obtain a polynomial time
algorithm with approximation ratio better than 2

Approximation Algorithm Summary

* The best known approximation algorithm for set cover is
the greedy.

— Itis NP-Complete to obtain better than In(n) approximation ratio
for set cover.

* The best known approximation algorithm for vertex cover
IS the greedy.

— It has been open for 40 years to obtain a polynomial time
algorithm with approximation ratio better than 2

* There is a long list of problems for which we do not know
the best approximation algorithms! Very active area of
research (including in our Theory group!)

