Dynamic Programming
Longest Path in a DAG,

Yin Tat Lee
Longest Path in a DAG
Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general directed graphs:
- It has the Hamiltonian Path as a special case
Q: What is the right ordering?
Remember, we have to use that G is a DAG, ideally in defining the ordering.

We saw that every DAG has a topological sorting
So, let’s use that as an ordering.
Suppose we have labelled the vertices such that \((i, j)\) is a directed edge only if \(i < j\).

Let \(OPT(j)\) = length of the longest path ending at \(j\)

Suppose \(OPT(j)\) is \((i_1, i_2), (i_2, i_3), \ldots, (i_{k-1}, i_k), (i_k, j)\), then

Obs 1: \(i_1 \leq i_2 \leq \ldots \leq i_k \leq j\).

Obs 2: \((i_1, i_2), (i_2, i_3), \ldots, (i_{k-1}, i_k)\) is the longest path ending at \(i_k\).

\[
OPT(j) = 1 + OPT(i_k).
\]
Suppose we have labelled the vertices such that \((i, j)\) is a directed edge only if \(i < j\).

Let \(OPT(j)\) = length of the longest path ending at \(j\)

\[
OPT(j) = \begin{cases}
0 & \text{If } j \text{ is a source} \\
1 + \max_{i: (i, j) \text{ an edge}} OPT(i) & \text{o.w.}
\end{cases}
\]
Outputting the Longest Path

Let G be a DAG given with a topological sorting: For all edges (i,j) we have $i<j$.

Initialize $\text{Parent}[j]=-1$ for all j.

Compute-$\text{OPT}(j)$:

1. If $(\text{in-degree}(j)==0)$
 - return 0
2. If $(\text{M}[j]==\text{empty})$
 - $\text{M}[j]=0$;
 - for all edges (i,j)
 - if $(\text{M}[j] < 1+\text{Compute-OPT}(i))$
 - $\text{M}[j]=1+\text{Compute-OPT}(i)$
 - $\text{Parent}[j]=i$
 - return $\text{M}[j]$

Let $\text{M}[k]$ be the maximum of $\text{M}[1], \ldots, \text{M}[n]$

While $(\text{Parent}[k]!=-1)$
- Print k
- $k=\text{Parent}[k]$

Record the entry that we used to compute OPT(j)
Exercise:
Longest Increasing Subsequence
Longest Increasing Subsequence

Given a sequence of numbers
Find the longest increasing subsequence in $O(n^2)$ time

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90
DP for LIS

Let \(\text{OPT}(j) \) be the longest increasing subsequence ending at \(j \).

Observation: Suppose the \(\text{OPT}(j) \) is the sequence
\[
 x_{i_1}, x_{i_2}, \ldots, x_{i_k}, x_j
\]

Then, \(x_{i_1}, x_{i_2}, \ldots, x_{i_k} \) is the longest increasing subsequence ending at \(x_{i_k} \), i.e., \(\text{OPT}(j) = 1 + \text{OPT}(i_k) \)

\[
\text{OPT}(j) = \begin{cases}
1 & \text{If } x_j > x_i \text{ for all } i < j \\
1 + \max_{i:x_i < x_j} \text{OPT}(i) & \text{o.w.}
\end{cases}
\]

Alternative Soln: This is a special case of Longest path in a DAG:
Construct a graph \(1, \ldots, n \) where \((i, j)\) is an edge if \(i < j \) and \(x_i < x_j \).
Shortest Paths with Negative Edge Weights
Shortest Paths with Neg Edge Weights

Given a weighted directed graph $G = (V, E)$ and a source vertex s, where the weight of edge (u,v) is $c_{u,v}$ (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dijkstra’s Algorithm fails when weights are negative

![Diagram showing shortest paths with negative edge weights]
Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the cycle again and again.

So, suppose G does not have a negative cycle.
Def: Let $OPT(v)$ be the length of the shortest $s - v$ path

$$OPT(v) = \begin{cases}
0 & \text{if } v = s \\
\min_{u: (u,v) \text{ an edge}} OPT(u) + c_{u,v} & \text{otherwise}
\end{cases}$$

The formula is correct. But it is not clear how to compute it.
DP for Shortest Path

Def: Let $OPT(v, i)$ be the length of the shortest $s - v$ path with at most i edges.

Let us characterize $OPT(v, i)$.

Case 1: $OPT(v, i)$ path has less than i edges.
- Then, $OPT(v, i) = OPT(v, i - 1)$.

Case 2: $OPT(v, i)$ path has exactly i edges.
- Let $s, v_1, v_2, ..., v_{i-1}, v$ be the $OPT(v, i)$ path with i edges.
- Then, $s, v_1, ..., v_{i-1}$ must be the shortest $s - v_{i-1}$ path with at most $i - 1$ edges. So,

$$OPT(v, i) = OPT(v_{i-1}, i - 1) + c_{v_{i-1}, v}$$
DP for Shortest Path

Def: Let $OPT(v, i)$ be the length of the shortest $s - v$ path with at most i edges.

$$
OPT(v, i) = \begin{cases}
0 & \text{if } v = s \\
\infty & \text{if } v \neq s, i = 0 \\
\min(OPT(v, i - 1), \min_{u:(u,v) \text{ an edge}} OPT(u, i - 1) + c_{u,v}) & \text{otherwise}
\end{cases}
$$

So, for every v, $OPT(v, ?)$ is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most $n - 1$ edges. So, $OPT(v, n - 1)$ is the answer.
Bellman Ford Algorithm

\[\text{for } v=1 \text{ to } n \]
\[\quad \text{if } v \neq s \text{ then} \]
\[\quad \quad M[v,0]=\infty \]
\[\quad M[s,0]=0. \]

\[\text{for } i=1 \text{ to } n-1 \]
\[\quad \text{for } v=1 \text{ to } n \]
\[\quad \quad M[v,i]=M[v,i-1] \]
\[\quad \quad \text{for every edge } (u,v) \]
\[\quad \quad \quad M[v,i]=\min(M[v,i], M[u,i-1]+c_{u,v}) \]

Running Time: \(O(nm) \)

Can we test if G has negative cycles?
Yes, run for \(i=1 \ldots 3n \) and see if the \(M[v,n-1] \) is different from \(M[v,3n] \)
Recipe:
• Follow the natural induction proof.
• Find out additional assumptions/variables/subproblems that you need to do the induction
• Strengthen the hypothesis and define w.r.t. new subproblems

Dynamic programming techniques.
• Whenever a problem is a special case of an NP-hard problem an ordering is important:
• Adding a new variable: knapsack.
• Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up:
• Different people have different intuitions
• Bottom-up is useful to optimize the memory