CSE 421

Dynamic Programming

Yin Tat Lee



Weighted Interval Scheduling



Interval Scheduling

- Job j starts at s(j) and finishes at f(j) and has weight w;
« Two jobs compatible if they don’t overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

Time




Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

« Consider jobs in ascending order of finishing time

« Add job to a subset if it is compatible with prev added jobs.
Observation: Greedy ALG fails spectacularly if arbitrary weights are
allowed:

weight = 1000 b by finish
weight = 1 a
» Time
0 1 2 3 4 5 6 7 8 9 10 11
weight = 1000 b by weight
weight=999 @ @ @ @ @ @G G G G Qq
Time

o 1 2 3 4 5 6 7 8 9 10 11 4



Weighted Job Scheduling by Induction

Suppose 1, ...,n are all jobs. Let us use induction:
IH: Suppose we can compute the optimum job scheduling for < n jobs.

|S: Goal: For any n jobs we can compute OPT.
Case 1: Job nis notin OPT.
-- Then, just return OPT of 1, ...,n — 1. \
Take best of the two
Case 2: Job nis in OPT. /
-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done? - n ~_
A: No, How many subproblems are there? n—1 n—2
Potentially 2™ all possible subsets of jobs. / \ / \

n—2 n—3 n—3 n—4

5



Sorting to Reduce Subproblems
[Why we can't order by start time? ]

Sorting Idea: Label jobs by finishing time (1) < --- < f(n)
IS: For jobs 1, ...,n we want to compute OPT

Case 1: Suppose OPT has job n.

« So, all jobs i that are not compatible with n are not OPT

« Letp(n) = largestindex i < n such that job i is compatible with n.
* Then, we just need to find OPT of 1, ..., p(n)

p(n)
p(n)+1



Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time (1) < --- < f(n)
IS: For jobs 1, ...,n we want to compute OPT

Case 1: Suppose OPT has job n.

« So, all jobs i that are not compatible with n are not OPT
 Letp(n) = largestindex i < n such that job i is compatible with n.
* Then, we just need to find OPT of 1, ..., p(n)

Case 2: OPT does not select job n. > Take best of the two
« Then, OPT is justthe OPT of 1, ...,n — 2

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1, ..., i for some i
So, at most n possible subproblems.



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time (1) < --- < f(n)
Def OPT(j) denote the weight of OPT solution of 1, ..., j

To solve OPT()): The most important part of a correct DP; It fixes IH

Case 1: OPT(j) has job j.

* S0, all jobs i that are not compatible with j are not OPT (j).
 Letp(j) = largestindex i < j such that job i is compatible with j.
S0 OPT(j) = OPT(p(j)) + w;.

Case 2: OPT(j) does not select job ;.
 Then, OPT(j) = OPT(j — 1).

(o ifj =0
OPT() =4 (Wj + 0PT(p(j)), OPT(j — 1)) 0. W.




Algorithm

Input: n, s(1),..,s(n) and f(1),..,f(n) and wq,...,Ww,.
Sort jobs by finish times so that f(1) < f(2) <--f(n).

Compute p(1),p(2),..,p(n)

OPT(j) {
if (j=0)
return 0

else

return max (w; + OPT(p(j)), OPT(j — 1)).



Recursive Algorithm Falls

Even though we have only n subproblems, if we do not store the
solution to the subproblems

» we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances
grows like Fibonacci sequence

v

p(1) =0,p(j) =j —2

10



Algorithm with Memolzation

Memorization. Compute and Store the solution of each sub-problem
In a cache the first time that you face it. lookup as needed.

Input: n, s(1),..,s(m) and f(1),..,f(n) and wy,.., w,.
Sort jobs by finish times so that f(1) < f(2) <--f(n).
Compute p(1),p(2),..,p(n)
for =1 ton

M[j] = empty
M[0] = O
OPT(j) {

if (M[Jj] is empty)

M[j] = max (w;+ OPT(p(j)), OPT(j — 1)).
return M[]J]

In practice, you may get |=lstackoverflow if n »> 10° (depends on the language). 11



Bottom up Dynamic Programming

You can also avoid recursion
« recursion may be easier conceptually when you use induction

Input: n, s(1),..,s(n) and f(1),..,f(n) and wy,.., W,.
Sort jobs by finish times so that f(1) < f(2) <. f(n).

Compute p(1),p(2),..,p(n)

OPT(j) {
M[O] = O
for =1 ton
M[3j] = max (w; + M[p(j)],M[j —1]).
}

Output M[n]

Claim: M[j] is value of OPT (j)
Timing: Easy. Main loop is 0(n); sorting is O(n logn).

12



OPT(j) =

Example

0
{ max (Wj +0PT(p())), OPT(j — 1)) 0. W.

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

ifj =0

i [ w | ei) JorTo)
0 0

1 3 0

2 4 0

3 1 0

4 3 1

5 4 0

6 3 2

7 2 3

8 4 5




OPT(j) =

Example

0
{ max (Wj +0PT(p())), OPT(j — 1)) 0. W.

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

ifj =0

i [ w | ei) JorTo)
0 0

1 3 0 3

2 4 0

3 1 0

4 3 1

5 4 0

6 3 2

7 2 3

8 4 5




ifj =0

0
OPT(j) = { max (Wj + OPT(p(j)), OPT(j — 1)) 0. W.

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

Jo | w | pQ) |OPT()

21 4| 0 | 4
3
31 1T O
4
4 | 3 | 1
5
514 0
6
6| 3| 2
T
28 ‘723
o t 2 3 4 5 6 7 8 9 10 1 |8l 4| 5




ifj =0

0
OPT(j) = { max (Wj + OPT(p(j)), OPT(j — 1)) 0. W.

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

3:.
4
4 | 3 | 1
5
514 0
6
6| 3| 2
T
28 ‘723
o t 2 3 4 5 6 7 8 9 10 1 |8l 4| 5




ifj =0

0
OPT(j) = { max (Wj + OPT(p(j)), OPT(j — 1)) 0. W.

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

4 ( 3|1 1 | 6
5

514 0

6

6| 3| 2

7

28 ‘723
o t 2 3 4 5 6 7 8 9 10 1 |8l 4| 5




ifj =0

0
OPT(j) = { max (Wj + OPT(p(j)), OPT(j — 1)) 0. W.

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

Jo | w | pQ) |OPT()

17131 0 | 3
2
2 1 4| 0| 4
3

301 | 0| 4

51 4|1 0 | 6
6
6| 3| 2
7
28 ‘723
o 1 2 3 4 5 6 7 8 9 10 1 lsl| a]| s




OPT(j) =

Example

0
{ max (Wj + OPT(p(j)), OPT(j — 1)) 0. W.

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

ifj =0

Wj

P()

3| 2 | 7
2 | 3
4 | 5




ifj =0

0
OPT(j) = { max (Wj + OPT(p(j)), OPT(j — 1)) 0. W.

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

i [ w | ei) JorTo)
0 0
1
1| 3 0 3
2
24| 0| 4
3 .
4
4 3 1 6
5
: 5 4 0 6
6
7
8 ‘ 7 2 3 7
o 1 2 3 4 5 6 7 8 9 10 11 8 | 4 5




ifj =0

0
OPT(j) = { max (Wj + OPT(p(j)), OPT(j — 1)) 0. W.

Example

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

Jo | w | pQ) |OPT()

0 0

1
1 3 0 3

2
2 | 4 0 4

3
3] 1 0 4
4

4 | 3 1 6




OPT(j) =

Example

0
{ max (Wj + OPT(p(j)), OPT(j — 1)) 0. W.

Label jobs by finishing time: f(1) < --- < f(n).
p(j) = largest index i < j such that job i is compatible with j.

ifj =0

i [ w | ei) JorTo)
0 0
1 3 0 3
2
2 4 0 4
3
3 1 0 4
4 3 1 6
5
5 4 0 6
6
6 | 3| 2 |7
(A
_ 71 2 3 7
—’
0 1 2 3 4 5 6 7 8 9 10 11 8 4 5 10




Dynamic Programming

Give a solution of a problem using smaller (overlapping)
sub-problems where

the parameters of all sub-problems are determined in-advance

Useful when the same subproblems show up again and
again in the solution.



Knapsack Problem



Knapsack Problem

Given n objects and a "knapsack.”

ltem i weighs w; > 0 kilograms and has value v; > 0.
Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40. 1 1 1
wW=11 2 6 2

3 18 5

4 22 6

5 28 7

Greedy: repeatedly add item with maximum ratio v; /w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

25



Dynamic Programming: First Attempt

Let OPT (i) = Max value of subsets of items 1, ...,i of weight < I/

Case 1: OPT (i) does not select item i
- In this case OPT (i) = OPT(i — 1)

Case 2: OPT (i) selects item i

* Inthis case, item i does not immediately imply we have to reject
other items

« The problem does not reduce to OPT (i — 1) because we now
want to pack as much value into box of weight < W — w;

Conclusion: We need more subproblems, we need to strengthen IH.

26



Stronger DP (Strengthening Hypothesis)

[What IS the ordering of item we should pick?]

Let OPT(i,w) = Max value of subsets of items 1, ..., i of weight < w

Case 1: OPT(i,w) selects item i
* Inthis case, OPT(i,w) =v; + OPT(i — 1,w — w;)
Case 2: OPT(i,w) does not select item i Take best of the two
* Inthis case, OPT(i,w) = OPT(i — 1,w).

\/

Therefore,
0 fi=0

OPT(i,w) =< OPT(i — 1,w) Ifw;, >w
max(OPT(i —1,w),v; + OPT(i—1,w —w;)) o.w.,

27



DP for Knapsack

Comp-OPT (i, w)
if M[i,w] == empty
if (i==0)
M[i,w]=0 recursive
else if (w; > w)
M[i,w]= Comp-OPT (i-1,w)
else
M[i,w]= max {Comp-OPT(i-1,w), v; + Comp-OPT (i-1,w-w,) }
return M[i, w]

for w=0 to W
M[O, w] = O

for i =1 ton Non-recursive
for w=1 to W

if (w; > w)

M[i, w] = M[i-1, w]
else
M[i, w] = max {M[i-1, w], v; + M[1-1, w-w; ]}

return M[n, W] 28



DP for Knapsack

0
{1} 0
1 (1,2} 0
{1,2,3y B0
{1,2,3,4} B
0

{1,2,3,4,5}

if (w; > w)
M[i, w]
else

M[i-1, w]

+1

v

w=11

M[i, w] = max {M[i-1, w], v; + M[i-1, w-w; ]}

OO D W N =

18
22
28

N O Ol N =

o 1 l2]3l4]5 67 890l
o o o o0 o o o0 O o o o



DP for Knapsack

+1

o 1 l2]3l4]5 67 890l
o o o o0 o o o0 O o o o

v

0
{1} 0 1 1 1 1 1 1 1 1 1 1 1
n+1 {1,2} 0
{1,2,3} 0
{1,2,3,4} 0
o)

{1,2,3,4,5}

W=t 1 1 1

if (w; > w) 2 6 2

M[i, w] = M[i-1, w] - o -
else

M[i, w] = max {M[i-1, w], v; + M[i-1, w-w; ]} 4 22 6

5 28 7



DP for Knapsack

+1

o 1 l2]3l4]5 67 890l
o o o o0 o o o0 O o o o

v

0)
S 0o 0ttt 1 1 1 1 1 1 1 1 1
N+l {1,2} 0 1 6 7
{1,2,3}) 0o 1
{1,2,3,4} BRI
, {1,2,3,4,5} RS
OPT: { 4,3}
value = 22 + 18 = 40 _
W=t 1 1 1
if (w; > w) 2 6 2
M[i, w] = M[i-1, w] 3 18 5
else
M[i, w] = max {M[i-1, w], v; + M[i-1, w-w; ]} 4 22 6
5 28 7



DP for Knapsack

+1

o)
{1} o) 1 1 1 1 1 1
Nl (1,2} o 1 6 7 7 7 7
{1,2,3} 0 1 6 7 7 18 19
{1,2,3,4} 0 1
! {1,2,3,4,5} B¢ 1
OPT: { 4,3}
value = 22 + 18 = 40 W= 11
if (w; > w)
M[i, w] = M[i-1, w]
else

M[i, w] = max {M[i-1, w], v; + M[i-1, w-w; ]}

1
7

OO D W N =

1
7

1
7

18
22
28

1
7

1
7

N O Ol N =

v

o 1 l2]3l4]5 67 890l
o o o o0 o o o0 O o o o



DP for Knapsack

+1

o 1 l2]3l4]5 67 890l
o o o o0 o o o0 O o o o

v

0
{1} 0 1 1 1 1 1 1 1 1 1 1 1
n+1 {1,2} 0 1 6 7 7 7 7 7 7 7 7 7
{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25
{(1,2,3,4} 0 1 6 7 7 18 22 24 28 29
B (1.2345) BN
OPT: {4, 3}
value = 22 + 18 = 40 _
w-=11 1 1 1
if (w, > W) 2 6 2
M[i, w] = M[i-1, w] 3 18 .
else
M[i, w] = max {M[i-1, w], v, + M[i-1, w-w; 1} 4 22 6
5 28 7



DP for Knapsack

+1

o 1 l2]3l4]5 67 890l
o o o o0 o o o0 O o o o

v

0
{1} 0 1 1 1 1 1 1 1 1 1 1 1
n+1 {1,2} 0 1 6 7 7 7 7 7 7 7 7 7
{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25
{1,2,3,4} 0 1 6 7 7 18 22 24 28 29 29 40
' {1,2,3,4,5} B 1 6 7 7 18 22 28 29 34 34 40
OPT: {4, 3}
value = 22 + 18 = 40 _
w=11 1 1 1
if (w, > W) 2 6 2
M[i, w] = M[i-1, w] 3 18 5
else
M[i, w] = max {M[i-1, w], v, + M[i-1, w-w, 1} 4 22 6
5 28 7



Knapsack Problem: Running Time

Running time: O(n - W)

* Not polynomial in input size!

« "Pseudo-polynomial.”

« Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:

There exists a polynomial algorithm that produces a feasible
solution that has value within 0.01% of optimum

In time Poly(n,log W).

— 35
UW Expert



DP Ideas so far

You may have to define an ordering to decrease
#subproblems

You may have to strengthen DP, equivalently the induction,
l.e., you have may have to carry more information to find the
Optimum.

This means that sometimes we may have to use two
dimensional or three dimensional induction

36



