CSE 421

Divide and Conquer / Closest Pair of Points

Yin Tat Lee
Where is the mistake?

Let $P(n) = "1 + 1 + \cdots (n \ times) \cdots + 1 = O(1)"$

Base case ($n = 1$): $1 = O(1)$ is true.

Induction Hypothesis: Suppose $P(k)$ holds.

Induction Step: (Goal: show $P(k + 1)$ holds)

By induction hypothesis,

$$1 + 1 + \cdots (k + 1 \ times) \cdots + 1 = O(1) + 1 = O(1).$$

Hence, $P(k + 1)$ holds. This finishes the induction.

Now, we know that $n = O(1)$ ☺

Problem: Hidden constant in the $O(\cdots)$ is increasing in the induction.
Almost all students give a similar wrong proof in HW3 Q1.
For midterm/final, we won’t catch you on such small details.
But it is the key point for this problem. So, we can’t forgive this.
Homework comments

Avoid writing code in the homework.
• It is often harder to understand.
• You need to write much more detail.
• We are unfair:
 • We deduct point for bug in code.
 • We do not deduct point for grammar mistake in pseudocode.
• See how pseudocode is done in the slide.
Midterm

Date: Next Mon (Oct 29)
Location: Same.

Admin said there is no room left with large table 😞.

Coverage: All materials up to this Friday.
Open book, open notes, open printout, hard copies only.

Half of the score are MC/Fill in the blank/simple questions.

This Friday (Oct 19): midterm review.
Go over some sample questions that is relevant to the midterm.
Divide and Conquer Approach
Divide and Conquer

We reduce a problem to several subproblems. Typically, each sub-problem is at most a constant fraction of the size of the original problem.

Recursively solve each subproblem
Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm,
A Classical Example: Merge Sort

Split to $n/2$

sort recursively

merge
Why Balanced Partitioning?

An alternative "divide & conquer" algorithm:
• Split into n-1 and 1
• Sort each sub problem
• Merge them

Runtime

\[T(n) = T(n-1) + T(1) + n \]

Solution:

\[T(n) = n + T(n - 1) + T(1) \]
\[= n + n - 1 + T(n - 2) \]
\[= n + n - 1 + n - 2 + T(n - 3) \]
\[= n + n - 1 + n - 2 + \cdots + 1 = O(n^2) \]
Suppose we've already invented Bubble-Sort, and we know it takes n^2.

Try just one level of divide & conquer:

- Bubble-Sort (first $n/2$ elements)
- Bubble-Sort (last $n/2$ elements)

Merge results

Time: $2T(n/2) + n = n^2/2 + n \ll n^2$

Almost twice as fast!
Reinventing Mergesort

• “the more dividing and conquering, the better”
 • Two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing.
 • Best is usually full recursion down to a small constant size (balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!

• Even unbalanced partitioning is good, but less good
 • Bubble-sort improved with a 0.1/0.9 split:
 \[(.1n)^2 + (.9n)^2 + n = .82n^2 + n\]

 The 18% savings compounds significantly if you carry recursion to more levels, actually giving \(O(n \log n)\), but with a bigger constant.

• This is why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.
Finding the Root of a Function
Finding the Root of a Function

Given a continuous function f and two points $a < b$ such that
\[
\begin{align*}
f(a) &\leq 0 \\
f(b) &\geq 0
\end{align*}
\]
Goal: Find a point c where $f(c)$ is close to 0.

f has a root in $[a, b]$ by intermediate value theorem

Note that roots of f may be irrational, So, we want to approximate the root with an arbitrary precision!
A Naive Approach

Suppose we want ϵ approximation to a root.

Divide $[a, b]$ into $n = \frac{b-a}{\epsilon}$ intervals. For each interval check $f(x) \leq 0, f(x + \epsilon) \geq 0$

This runs in time $O(n) = O\left(\frac{b-a}{\epsilon}\right)$

Can we do faster?
Divide & Conquer (Binary Search)

Bisection \((a, b, \varepsilon)\)

if \((b - a) < \varepsilon\) then

 return \(a\);

else

 \(m \leftarrow (a + b)/2\);
 if \(f(m) \leq 0\) then
 return Bisection\((c, b, \varepsilon)\);
 else
 return Bisection\((a, c, \varepsilon)\);
Time Analysis

Let $n = \frac{a-b}{\epsilon}$ be the # of intervals and $c = \frac{(a + b)}{2}$

Always half of the intervals lie to the left and half lie to the right of c

So,

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

i.e., $T(n) = O(\log n) = O\left(\log\left(\frac{a-b}{\epsilon}\right)\right)$

For d dimension,

“Binary search” can be used to minimize convex functions.

The current best algorithms take $O(d^3 \log^{O(1)}(d/\epsilon))$.

Unfortunately, the algorithm is unusably complicated.
Fast Exponentiation
Fast Exponentiation

• **Power**\((a, n)\)

 Input: integer \(n \geq 0\) and number \(a\)

 Output: \(a^n\)

• Obvious algorithm

 \(n - 1\) multiplications

• Observation:

 if \(n\) is even, then \(a^n = a^{n/2} \cdot a^{n/2}\).
Divide & Conquer (Repeated Squaring)

\[
\text{Power}(a, n) \{
 \text{if } (n = 0) \quad \text{return 1}
 \text{else if } (n \text{ is even}) \quad \text{return Power}(a, n/2) \cdot \text{Power}(a, n/2)
 \text{else} \quad \text{return Power}(a, (n - 1)/2) \cdot \text{Power}(a, (n - 1)/2) \cdot a
\}
\]

Is there any problem in the program?

\[
k = \text{Power}(a, n/2); \text{return } k \cdot k;
\]
\[
k = \text{Power}(a, (n - 1)/2); \text{return } k \cdot k \cdot a;
\]

Time (# of multiplications):
\[
T(n) \leq T([n/2]) + 2 \text{ for } n \geq 1
\]
\[
T(0) = 0
\]

Solving it, we have
\[
T(n) \leq T([n/2]) + 2 \leq T([n/4]) + 2 + 2 \leq \cdots \leq T(1) + 2 + \cdots + 2 \leq 2 \log_2 n.
\]

\[
\log_2(n) \text{ copies}
\]
Finding the Closest Pair of Points
Closest Pair of Points (general metric)

Given n points and arbitrary distances between them, find the closest pair.

Must look at all $\binom{n}{2}$ pairwise distances, else any one you didn’t check might be the shortest. i.e., you have to read the whole input.
Given n points on the real line, find the closest pair, e.g., given 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1 find the closest pair

Fact: Closest pair is *adjacent* in ordered list
So, first sort, then scan adjacent pairs.
Time $O(n \log n)$ to sort, if needed, Plus $O(n)$ to scan adjacent pairs

Key point: do *not* need to calculate distances between all pairs: exploit geometry + ordering
Closest Pair of Points (2-dimensions)

Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points in $\Theta(n^2)$ time.

Assumption: No two points have same x coordinate.
Closest Pair of Points (2-dimensions)

No single direction along which one can sort points to guarantee success!
Divide & Conquer

Divide: draw vertical line L with $\approx n/2$ points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

How?
Key Observation

Suppose δ is the minimum distance of all pairs in left/right of L.

$$
\delta = \min(12, 21) = 12.
$$

Key Observation: suffices to consider points within δ of line L.

Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.
Almost 1D Problem

Partition each side of L into $\frac{\delta}{2} \times \frac{\delta}{2}$ squares

Claim: No two points lie in the same $\frac{\delta}{2} \times \frac{\delta}{2}$ box.

Proof: Such points would be within

$$\sqrt{\left(\frac{\delta}{2}\right)^2 + \left(\frac{\delta}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} \approx 0.7\delta < \delta$$

Let s_i have the i^{th} smallest y-coordinate among points in the 2δ-width-strip.

Claim: If $|i - j| > 11$, then the distance between s_i and s_j is $> \delta$.

Proof: only 11 boxes within δ of $y(s_i)$.
Closest Pair (2 dimension)

Closest-Pair\((p_1, p_2, \ldots, p_n)\) \{
 if\((n \leq 2)\) return \(|p_1 - p_2|\)

 Compute separation line \(L\) such that half the points are on one side and half on the other side.

 \(\delta_1 = \text{Closest-Pair(left half)}\)
 \(\delta_2 = \text{Closest-Pair(right half)}\)
 \(\delta = \min(\delta_1, \delta_2)\)

 Delete all points further than \(\delta\) from separation line \(L\)

 Sort remaining points \(p[1]...p[m]\) by y-coordinate.

 for \(i = 1, 2, \ldots, m\)
 for \(k = 1, 2, \ldots, 11\)
 if \(i + k \leq m\)
 \(\delta = \min(\delta, \text{distance}(p[i], p[i+k]))\);

 return \(\delta\).
\}

Where is the bottleneck?
Closest Pair Analysis

Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm

$$D(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2D\left(\frac{n}{2}\right) + 11n & \text{o. w.} \Rightarrow D(n) = O(n \log n)
\end{cases}$$

BUT, that’s only the number of *distance calculations*.

What if we counted running time?

$$T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + O(n \log n) & \text{o. w.} \Rightarrow D(n) = O(n \log^2 n)
\end{cases}$$
Closest-Pair \((p_1, p_2, \ldots, p_n)\) \\
\{ \\
\text{if} (n \leq 2) \text{ return } |p_1 - p_2| \\
\}

Compute separation line \(L\) such that half the points are on one side and half on the other side.

\((\delta_1, p_1) = \text{Closest-Pair(left half)}\)
\((\delta_2, p_2) = \text{Closest-Pair(right half)}\)
\(\delta = \min(\delta_1, \delta_2)\)
\(p_{\text{sorted}} = \text{merge}(p_1, p_2)\) (merge sort it by \(y\)-coordinate)

Let \(q\) be points (ordered as \(p_{\text{sorted}}\)) that is \(\delta\) from line \(L\).

\text{for } i = 1, 2, \ldots, m \\
\text{for } k = 1, 2, \ldots, 11 \\
\quad \text{if } i + k \leq m \\
\quad \quad \delta = \min(\delta, \text{distance}(q[i], q[i+k]));

\text{return } \delta \text{ and } p_{\text{sorted}}.

\[
T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2T \left(\frac{n}{2} \right) + O(n) & \text{o.w.}
\end{cases}
\]

\[
\Rightarrow D(n) = O(n \log n)
\]