
CSE421: Introduction to Algorithms

Homework 3

Due: October 17, 2018

1. Prove, by induction, that 11 + 22 + 33 + · · ·+ nn = O(nn).

2. Consider the interval scheduling problem in the class. Instead of selecting the first compatible
job to finish as in the class, we consider the greedy algorithm that picks the job j that is
compatible with all other jobs picked with largest s(j). Prove that this yields an optimal
solution or give an example to disprove this algorithm.

3. Given a sequence d1, . . . , dn of integers design a polynomial time algorithm that construct a
tree such that the degree of vertex i is di. If no such tree exists your algorithm must output
“Impossible”.

Hint: Show that for every sequence d1, . . . , dn there exists a tree with this degree sequence
if and only if

∑
i di = 2(n − 1) and for all i, we have di ≥ 1. Also, you may have to argue

that if the sum of n integers is less than 2n then one of them is at most 1.

4. Given a tree T with n vertices and a set of pairs (u1, v1), . . . , (uk, vk), design an O(n+k log n)
time algorithm to find the lowest common ancestor of ui and vi in T for all i = 1, 2, . . . , k.

Hint: Let dfsnum[v] be the sequence number for when it was first discovered by depth-first
search. This is the number that we printed next to each discovered vertex in DFS-Tree slides.
Let st[·] contains all nodes in the stack where their DFS call is still running. Again see the
slide for the example. Show that for any pair ui, vi such that ui is discovered first in the DFS,
the lowest common ancestor of ui, vi is the largest j such that st[j] ≤ dfsnum[ui] at the time
that we call dfs(vi).

5. Extra Credit: Let [n] = {1, 2, 3, · · · , n} and I be a collection of subsets of [n]. We call any
set I ∈ I is nice.

We know that I satisfy two main axioms:

(a) If X ⊂ Y and Y ∈ I, then X ∈ I. Namely, any subset of a nice set is nice.

(b) If X ∈ I, Y ∈ I and |Y | > |X|, then there exists i ∈ Y \X such that X ∪ {i} ∈ I.
Namely, if X is nice and there exists a larger nice set Y , then X can be extended to a
larger nice set by adding an element of Y \X.

The collection I may have exponentially size and is only defined implicitly. However, we
assume that we can test if a set I is nice or not in polynomial time.

Given a cost c1, c2, c3, · · · , cn, design a greedy polynomial time algorithm to find a nice set X
with maximum total cost c(X) =

∑
x∈X cx.

3-1

