
CSE 421:  Intro Algorithms

Dynamic Programming, I�
Intro: Fibonacci & Stamps�

W. L. Ruzzo
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Dynamic Programming

Outline:
General Principles
Easy Examples – Fibonacci, Licking Stamps

Meatier examples
Weighted interval scheduling
String Alignment

RNA Structure prediction

Maybe others



Some Algorithm Design 
Techniques, I: Greedy

Greedy algorithms
Usually builds something a piece at a time
Repeatedly make the greedy choice - the one 
that looks the best right away

e.g. closest pair in TSP search

Usually simple, fast if they work (but often don’t)
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Some Algorithm Design 
Techniques, II: D & C

Divide & Conquer
Reduce problem to one or more sub-problems 

of the same type, i.e., a recursive solution

Typically, sub-problems are disjoint, and at most 
a constant fraction of the size of the original

e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm
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Some Algorithm Design 
Techniques, III: DP

Dynamic Programming
Reduce problem to one or more sub-problems 

of the same type, i.e.,  a recursive solution

Useful when the same sub-problems show up 
repeatedly in the solution

Often very robust to problem re-definition
Sometimes gives exponential speedups
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“Dynamic Programming”

Program – A plan or procedure for dealing 
with some matter �

– Webster’s New World Dictionary



Dynamic Programming History

Bellman.  Pioneered the systematic study of dynamic 
programming in the 1950s.

Etymology.
Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

“it’s impossible to use dynamic in a pejorative sense”
“something not even a Congressman could object to”
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Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.
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A very simple case:               
Computing Fibonacci Numbers

Recall Fn = Fn-1 + Fn-2  and F0 = 0, F1 = 1
0  1  1  2  3  5  8  13  21  34  55  89  144  233  …

Recursive algorithm:
FiboR(n) �

if n = 0 then return(0)                                             
else if n = 1 then return(1)                                                 
else return(FiboR(n-1)+FiboR(n-2))

Note: 
Exponential ↑: F(n) ≈ Φn/√, Φ = (1+√)/2 ≈ 1.618… 5 5
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Call tree - start
F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)
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Full call tree
F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

many duplicates ⇒ exponential time!

F(n) ≈ Φn/√5



Two Alternative Fixes

Memoization (“Caching”)
Compute on demand, but don’t re-compute:

Save answers from all recursive calls

Before a call, test whether answer saved

Dynamic Programming (not memoized)
Pre-compute, don’t re-compute:

Recursion become iteration (top-down → bottom-up)

Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structs11
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Fibonacci - Memoized Version

initialize: F[i] ← undefined for all i > 1
F[0] ← 0 
F[1] ← 1 

FiboMemo(n):
if(F[n] undefined) {

F[n] ← FiboMemo(n-2)+FiboMemo(n-1)

}
return(F[n])

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)
0

F (1)

1
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Fibonacci - Dynamic 
Programming Version

FiboDP(n):                                                      
F[0] ← 0                                                   
F[1] ← 1                                                
for I = 2 to n do                                          
     F[i]  ← F[i-1]+F[i-2]                                  
end                                                   
return(F[n])

For this problem, suffices to keep only last 2 entries 
instead of full array, but about the same speed

0

1

1

2

3

5

8

13

21

Goal

An
tic

ip
at

ed



14

Dynamic Programming

Useful when 
Same recursive sub-problems occur repeatedly

Parameters of these recursive calls anticipated

The solution to whole problem can be solved 
without knowing the internal details of how the 
sub-problems are solved

“principle of optimality” – more below, e.g. slide 19
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Example: Making change

Given:
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N 

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works: 
Give as many as possible of the next biggest �
denomination
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Licking Stamps

Given: 
Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N
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5 0 2 7

4 1 3 8

3 3 0 6

# of 5¢
stamps

# of 4 ¢
stamps

# of 1¢
stamps

total
number

A Few Ways To Lick 27¢

Morals: Greed doesn’t pay; success of “cashier’s alg” 
depends on coin denominations
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A Simple Algorithm

At most N stamps needed, etc.
   for a = 0, …, N {�

  for b = 0, …, N {�
for c = 0, …, N {�

if (5a+4b+c == N && a+b+c is new min) �
{retain (a,b,c);}}}�

   output retained triple;�

Time: O(N3) �
(Not too hard to see some optimizations, but we’re after bigger fish…)
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Better Idea

Theorem:  If last stamp in an opt sol has value 
v, then previous stamps are opt sol for N-v. 
Proof: if not, we could improve the solution 
for N by using opt for N-v. �
Alg: for i = 1 to n:

OPT ( i ) = min
0
1+OPT ( i−1)
1+OPT ( i−4)
1+OPT ( i−5)

i=0
i≥1
i≥4
i≥5

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Claim: OPT(i) = 
min number of 
stamps totaling i¢
Pf: induction on i.
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New Idea: Recursion

   27

22 23 26

  17     18   21  18   19     22  21 22       25 

Time:  > 3N/5 

... ... ... ... ... ... ... ... ...

OPT ( i ) = min
0
1+OPT ( i−1)
1+OPT ( i−4)
1+OPT ( i−5)

i=0
i≥1
i≥4
i≥5

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Another New Idea: �
Avoid Recomputation

Tabulate values of solved subproblems
Top-down: “memoization”
Bottom up (better): �
�

for i = 0, …, N do              

Time: O(N)

OPT ( i ) = min
0
1+OPT ( i−1)
1+OPT ( i−4)
1+OPT ( i−5)

i=0
i≥1
i≥4
i≥5

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪



i 0 1 2 3 4 5 6 7 8 9 10 11 12

OPT[i] 0 1 2 3 1 1 2 3 2
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Finding How Many Stamps

1+Min(3,1,3) = 2

Goal



i 0 1 2 3 4 5 6 7 8 9 10 11 12

OPT[i] 0 1 2 3 1 1 2 3 2
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Finding Which Stamps: �
Trace-Back

1+Min(3,1,3) = 2

4¢

OPT ( i ) = min
0
1+OPT ( i−1)
1+OPT ( i−4)
1+OPT ( i−5)

i=0
i≥1
i≥4
i≥5

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which 
predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed
TraceBack(i):

if i == 0 then return;
for d in {1, 4, 5} do

if OPT[i] == 1 + OPT[i - d] 
    then break;
print d;
TraceBack(i - d); OPT ( i ) = min

0
1+OPT ( i−1)
1+OPT ( i−4)
1+OPT ( i−5)

i=0
i≥1
i≥4
i≥5

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Complexity Note

O(N) is better than O(N3) or O(3N/5)

But still exponential in input size (log N bits) �

(E.g., miserable if N is 64 bits – c•264 steps &  264 memory.) 

Note: can do in O(1) for fixed denominations, e.g., 
5¢, 4¢, and 1¢ (how?) but not in general (i.e., when 
denominations and total are both part of the input).  
See “NP-Completeness” later.
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Elements of Dynamic 
Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure” �
Optimal solution contains optimal subproblems�
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”�
The same subproblems arise in various ways


