
CSE 421 Intro to Algorithms Autumn 2017 

Homework 7   

Due Friday December 1, 4:00 pm 

Problem 1:   

 

Problem 2:   

 



Problem 3:   

 

 

 



Problem 4 (Extra Credit):  

We saw how repeatedly augmenting along shortest paths (given by a BFS each time) produced a 

better runtime analysis for general network flow. In this problem you will do something similar in 

the special case of finding a maximum matching in a bipartite graph � � ��� �� where the two 

sides of � are � and 	, 
 � ���, � � ���. The idea here will be to augment along many shortest 

paths at the same time. In order for this to work, the paths better not share any edges. Your 

algorithm will add the slightly stronger condition that the paths do not share any vertices and will 

include as many shortest paths as possible at each step.  

More precisely, at each round the new algorithm will simultaneously augment along all paths in 

some maximal set 
����� of vertex-disjoint shortest augmenting paths in the flow graph associated 

with the bipartite matching problem. (In other words, if ����� �� is the length of the shortest 

augmenting path in the residual graph ���then every path in 
����� has length ����� ��, no two 

paths in 
������share any vertices other than � or �� and any other ��-path of length ����� ��  shares 

at least one vertex other than � and ��with a path in 
�����.)  

a. Show how to find a set 
����� and do all the augmentations on its paths to get a flow �� in 

time ��� � 
�� 
b. Prove that ������ �� � ����� �� � �. 

c. Given two matchings   and  ! on graph G we can define the symmetric difference, 

 " !, of   and  !�to be the graph consisting of edges that occur in exactly one of the 

two matchings.  " !consists of a collection of vertex-disjoint paths and cycles (why?). 

Show that if  ! is a maximum matching and flow � corresponds to a matching   of � 

then  

i.  " !contains exactly � !� # � � vertex-disjoint odd-length paths. 

ii. Any path of odd length $ in  " !corresponds to an augmenting path of length 

$ � � in ��.  

iii. Use these two properties to prove that once all augmenting paths in �� are of 

length at least $ � � then at most 
%$ additional augmentations will produce a 

maximum flow (and hence maximum matching). 

d. Use the above analysis with a suitable value of $ to show that this algorithm computes a 

maximum matching in ��

&

'��� time 

 


