CSE 421 Intro to Algorithms Autumn 2017

Homework 6

Due Monday November 20, 4:00 pm

Problem 1:

Suppose you're looking at a flow network G with source s and sink ¢, and
you want to be able to express something like the following intuitive no-
tion: Some nodes are clearly on the “source side” of the main bottlenecks;
some nodes are clearly on the “sink side” of the main bottlenecks; and
some nodes are in the middle. However, G can have many minimum cuts,
so we have to be careful in how we try making this idea precise.

Here’s one way to divide the nodes of G into three categories of this
sort.

e We say a node v is upstream if, for all minimum s-t cuts (A, B), we
have v € A—that is, v lies on the source side of every minimum cut.

e We say a node v is downstream if, for all minimum s-t cuts (A, B), we
have v € B—that is, v lies on the sink side of every minimum cut.

e We say a node v is central if it is neither upstream nor downstream,;
there is at least one minimum s-t cut (A, B) for which v € A, and at
least one minimum s-t cut (A’, B') for which v e B.

Give an algorithm that takes a flow network G and classifies each of
its nodes as being upstream, downstream, or central. The running time
of your algorithm should be within a constant factor of the time required
to compute a single maximum flow.



Problem 2 (more dynamic programming):

Gerrymandering is the practice of carving up electoral districts in very
careful ways so as to lead to outcomes that favor a particular political
party. Recent court challenges to the practice have argued that through
this calculated redistricting, large numbers of voters are being effectively
(and intentionally) disenfranchised.

Computers, it turns out, have been implicated as the source of some
of the “villainy” in the news coverage on this topic: Thanks to powerful
software, gerrymandering has changed from an activity carried out by a
bunch of people with maps, pencil, and paper into the industrial-strength
process thatit is today. Why is gerrymandering a computational problem?
There are database issues involved in tracking voter demographics down
to the level of individual streets and houses; and there are algorithmic
issues involved in grouping voters into districts. Let’s think a bit about
what these latter issues look like.

Suppose we have a set of n precincts P, P, ..., P,, each containing
m registered voters. We're supposed to divide these precincts into two
districts, each consisting of n/2 of the precincts. Now, for each precinct,
we have information on how many voters are registered to each of two
political parties. (Suppose, for simplicity, that every voter is registered
to one of these two.) We’ll say that the set of precincts is susceptible to
gerrymandering if it is possible to perform the division into two districts
in such a way that the same party holds a majority in both districts.

Give an algorithm to determine whether a given set of precincts
is susceptible to gerrymandering; the running time of your algorithm
should be polynomial in n and m.

Example. Suppose we have n =4 precincts, and the following information
on registered voters.

Precinct 1 2 3 4

Number registered for party A 55 43 60 47
Number registered for party B 45 57 40 53

This set of precincts is susceptible since, if we grouped precincts 1
and 4 into one district, and precincts 2 and 3 into the other, then party
A would have a majority in both districts. (Presumably, the “we” who are
doing the grouping here are members of party A.) This example is a quick
illustration of the basic unfairness in gerrymandering: Although party A
holds only a slim majority in the overall population (205 to 195), it ends
up with a majority in not one but both districts.



Problem 3 (applications of network flow):

Consider a set of mobile computing clients in a certain town who each
need to be connected to one of several possible base stations. We'll
suppose there are n clients, with the position of each client specified
by its (x, y) coordinates in the plane. There are also k base stations; the
position of each of these is specified by (x, y) coordinates as well.

For each client, we wish to connect it to exactly one of the base
stations. Our choice of connections is constrained in the following ways.

There is a range parameter r—a client can only be connected to a base
station that is within distance r. There is also a load parameter L—no
more than L clients can be connected to any single base station.

Your goal is to design a polynomial-time algorithm for the following
problem. Given the positions of a set of clients and a set of base stations,
as well as the range and load parameters, decide whether every client can
be connected simultaneously to a base station, subject to the range and
load conditions in the previous paragraph.

Problem 4 (Extra Credit):

Suppose that you have a set S of possible labels and are given a directed
graph G=(V,E) with a designated start node s with each edge (u,v) having
a label L(u,v) from S. (Note that multiple edges out of a node may have
the same label.) In addition, each edge has a probability p(u,v)> 0 of being
taken when at u. (That is, for every u in V the sum over all v with (u,v) in
E of p(u,v) is 1.) The probability of taking a path beginning at the start
node s is the product of the probabilities labeling its edges. Produce an
efficient algorithm that will take as input the graph G with its edge labels
and edge probabilities and a sequence of labels ai,...,at and will determine
the most likely path beginning at node s that is consistent with the
sequence of labels (and determine the probability of that path). You can
assume that arithmetic operations on real numbers have cost 1.



