CSE 421 Intro to Algorithms Autumn 2017

Homework 5

Due Monday November 13, 4:00 pm

Problem 1:

Suppose we want to replicate a file over a collection of n servers, labeled
$1,S,,...,S,. To place a copy of the file at server S; results in a placement
cost of ¢;, for an integer ¢; > 0.

Now, if a user requests the file from server S;, and no copy of the file is
present at S;, then the servers S;, 4, S;1,, S;13 . . . are searched in order until
a copy of the file is finally found, say at server S;, where j > i. This results
in an access cost of j — i. (Note that the lower-indexed servers S;_{,S;_,, . ..
are not consulted in this search.) The access costis 0if S; holds a copy of
the file. We will require that a copy of the file be placed at server S,, so
that all such searches will terminate, at the latest, at S,,.

We’d like to place copies of the files at the servers so as to minimize
the sum of placement and access costs. Formally, we say that a configu-
ration is a choice, for each server S; withi=1,2,...,n — 1, of whether to
place a copy of the file at S; or not. (Recall that a copy is always placed at
S,.) The total cost of a configuration is the sum of all placement costs for
servers with a copy of the file, plus the sum of all access costs associated
with all n servers.

Give a polynomial-time algorithm to find a configuration of minimum
total cost.

Problem 2:

In a word processor, the goal of “pretty-printing” is to take text with a
ragged right margin, like this,

Call me Ishmael.

Some years ago,

never mind how long precisely,

having little or no money in my purse,

and nothing particular to interest me on shore,
I thought I would sail about a little

and see the watery part of the world.

and turn it into text whose right margin is as “even” as possible, like this.

Call me Ishmael. Some years ago, never
mind how long precisely, having little
or no money in my purse, and nothing
particular to interest me on shore, I
thought I would sail about a little

and see the watery part of the world.

To make this precise enough for us to start thinking about how to
write a pretty-printer for text, we need to figure out what it means for the
right margins to be “even.” So suppose our text consists of a sequence of
words, W = {w;, w,, ..., w,}, where w; consists of ¢; characters. We have
a maximum line length of L. We will assume we have a fixed-width font
and ignore issues of punctuation or hyphenation.

A formatting of W consists of a partition of the words in W into lines.

In the words assigned to a single line, there should be a space after each
word except the last; and so if wj, Wiy, .. ., Wy are assigned to one line,
then we should have

k—1

@+ | +a=L.

i=]
We will call an assignment of words to a line valid if it satisfies this
inequality. The difference between the left-hand side and the right-hand
side will be called the slack of the line—that is, the number of spaces left
at the right margin.

Give an efficient algorithm to find a partition of a set of words W
into valid lines, so that the sum of the squares of the slacks of all lines
(including the last line) is minimized.

Problem 3:

The problem of searching for cycles in graphs arises naturally in financial
trading applications. Consider a firm that trades shares in n different
companies. For each pair i #j, they maintain a trade ratio r; meaning
that one share of i trades for r; shares of j. Here we allow the rate r to be
fractional; that s, r; = % means that you can trade three shares of i to get

two shares of j.

A trading cycle for a sequence of shares i,1i,,...,i consists of
successively trading shares in company i; for shares in company i,, then
shares in company i, for shares i;, and so on, finally trading shares in i
back to shares in company i,. After such a sequence of trades, one ends up
with shares in the same company i; that one starts with. Trading around a
cycle is usually a bad idea, as you tend to end up with fewer shares than
you started with. But occasionally, for short periods of time, there are
opportunities to increase shares. We will call such a cycle an opportunity
cycle, if trading along the cycle increases the number of shares. This
happens exactly if the product of the ratios along the cycle is above 1. In
analyzing the state of the market, a firm engaged in trading would like
to know if there are any opportunity cycles.

Give a polynomial-time algorithm that finds such an opportunity
cycle, if one exists.

Problem 4 (Extra Credit):

In this problem you are given as input a binary tree T=(V,E) with each leaf w labelled by
a symbol sw from some fixed alphabet A, as well as a two-dimensional non-negative array
of costs indexed by pairs of elements of A such that c[s,t] is the cost of changing symbol s
to symbol t and this satisfies ¢[s,s]=0 and c[s,t]=c[t,s] for all s,t in A. Design an algorithm
to label each internal node v of the binary tree by a symbol sy from A so as to minimize the
sum over all (u,v) in E of ¢[Su,sv].

(This kind of problem arises in computational biology when one wishes to assess a
potential evolutionary tree and reconstruct properties of potential ancestral species given
this tree. In this case each "symbol" might be a very short sequence - or even just a letter -
of DNA or protein that might at a given position within a longer sequence, and ¢[s,t] is the
cost of the evolutionary change in going from s to t.)

Problem 5 (Extra Credit):

Use i1deas similar to those for finding the closest pair in two dimensional space to
give a divide and conquer algorithm for finding the closest pair among n points in
three dimensional space that is much more efficient than the naive O(n?) time
algorithm. Prove the running time of your algorithm. Better running times will
yield better credit for this problem.

