
CSE 421 Intro to Algorithms Autumn 2017

Homework 4

Due Friday October 27, 4:00 pm

Problem 1:

Given an array of elements A[1,…,n], give an O(n log n) time algorithm

to find a majority element, namely an element that is stored in more than

n/2 locations, if one exists. Note that the elements of the array are not

necessarily integers, so you can only check whether two elements are

equal or not, and not whether one is larger than the other.

HINT: Observe that if there is a majority element in the whole array, then

it must also be a majority element in either the first half of the array or the

second half of the array.

Problem 2:

Show how to multiply two degree 2 polynomials using fewer

multiplications of coefficients than the naive algorithm. You can do it with

only 5 multiplications (not counting multiplications by constants). (For

partial credit, show how to do this with only 6 multiplications.) Use this

to describe an algorithm for polynomial multiplication that is more

efficient than Karatsuba's algorithm.

Why wouldn't 6 multiplications be enough to be better than Karatsuba's

algorithm?

HINT: Use evaluation and interpolation.

Problem 3:

Problem 4 (Extra Credit):

(Due Monday, November 6, 11:59pm - may be done with a partner - list your partner on

your homework.)

In describing and analyzing Strassen's algorithm we assumed that we used divide

and conquer all the way down to tiny matrices. However, on small matrices the

ordinary matrix multiplication algorithm will be faster because of lower overhead.

This is a common issue with divide and conquer algorithms. The best way to run

these algorithms typically is to test the input size n at the start to see if it is big

enough to make using divide and conquer worthwhile; if n is larger than some

threshold t then the algorithm would do a level of recursion, if n is below that

threshold then it would do the non-recursive algorithm.

Your job in this question is to figure out the best choice for that threshold value for

a version of Strassen's algorithm over the integers based on your implementation.

(See the class slides for the description of the recursion used in Strassen's algorithm

and for the code for the basic non-recursive algorithm for matrix multiplication.)

You should code up the pure algorithms first and then create the final hybrid

algorithm. For simplicity you can assume that the size n of the matrix is a power of

2 and figure out the matrix size t=2i below which it is better to switch to the ordinary

algorithm.

Your goal is to beat the ordinary algorithm by as much as possible and so find the

smallest cross-over point you can. The language you choose to implement this in is

somewhat up to you. However, the object-oriented implementation of two-

dimensional arrays in Java with most of its standard class libraries is not great for

working with two-dimensional sub-arrays. Using a language such as C that has more

efficient array implementations and can use integer arithmetic on the array indices

to let you identify submatrices without copying them will give you better results.

Check your answer for correctness against the naive algorithm. For your solution

upload a PDF of your code, information on your test inputs, the timings that you

found, and the choice of t that you found works best.

