CSE 421 Intro to Algorithms Autumn 2017

Homework 3

Due Friday October 20, 4:00 pm

Problem 1:

A small business—say, a photocopying service with a single large
machine—faces the following scheduling problem. Each morning they
get a set of jobs from customers. They want to do the jobs on their single
machine in an order that keeps their customers happiest. Customer 's
job will take t; time to complete. Given a schedule (i.e., an ordering of the
jobs), let C; denote the finishing time of job i. For example, if job j is the
first to be done, we would have C; =¢; and if job j is done right after job
i, we would have C; = C; + t;. Each customer i also has a given weight w;
that represents his or her importance to the business. The happiness of
customer i is expected to be dependent on the finishing time of i’s job.
So the company decides that they want to order the jobs to minimize the
weighted sum of the completion times, "I, w,C,.

Design an efficient algorithm to solve this problem. That is, you are

given a set of n jobs with a processing time t; and a weight w; for each
job. You want to order the jobs so as to minimize the weighted sum of
the completion times, Y\, w;C;.
Example. Suppose there are two jobs: the first takes time ¢; =1 and has
weight w; = 10, while the second job takes time t, =3 and has weight
w, = 2. Then doing job 1 first would yield a weighted completion time
of 10-1+ 2 -4 =18, while doing the second job first would yield the larger
weighted completion time of 10-4 + 2 - 3 = 46.



Problem 2:

Consider the following variation on the Interval Scheduling Problem. You
have a processor that can operate 24 hours a day, every day. People
submit requests to run daily jobs on the processor. Each such job comes
with a start time and an end time; if the job is accepted to run on the
processor, it must run continuously, every day, for the period between
its start and end times. (Note that certain jobs can begin before midnight
and end after midnight; this makes for a type of situation different from
what we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as
possible (regardless of their length), subject to the constraint that the
processor can run at most one job at any given point in time. Provide an
algorithm to do this with a running time that is polynomial in n. You may
assume for simplicity that no two jobs have the same start or end times.

Example. Consider the following four jobs, specified by (start-time, end-
time) pairs.

(6 M, 6 AM.), (9 M, 4 AM.), (3 AM, 2 pPM.), (1 PM, 7 PM.).

The optimal solution would be to pick the two jobs (9 pM, 4 AM.) and (1
P.M., 7 P.M.), which can be scheduled without overlapping.



Problem 3:

A group of network designers at the communications company CluNet
find themselves facing the following problem. They have a connected
graph G = (V, E), in which the nodes represent sites that want to com-
municate. Each edge e is a communication link, with a given available
bandwidth b..

For each pair of nodes u, v € V, they want to select a single u-v path P
onwhich this pair will communicate. The bottleneck rate b(P) of this path P
is the minimum bandwidth of any edge it contains; thatis, b(P) = min.p b,.
The best achievable bottleneck rate for the pair u,v in G is simply the
maximum, over all u-v paths P in G, of the value b(P).

It’s getting to be very complicated to keep track of a path for each pair
of nodes, and so one of the network designers makes a bold suggestion:
Maybe one can find a spanning tree T of G so that for every pair of nodes
u, v, the unique u-v path in the tree actually attains the best achievable
bottleneck rate for u,v in G. (In other words, even if you could choose
any u-v path in the whole graph, you couldn’t do better than the u-v path
inT.)

This idea is roundly heckled in the offices of CluNet for a few days,
and there’s a natural reason for the skepticism: each pair of nodes
might want a very different-looking path to maximize its bottleneck rate;
why should there be a single tree that simultaneously makes everybody
happy? But after some failed attempts to rule out the idea, people begin
to suspect it could be possible.

Show that such a tree exists, and give an efficient algorithm to find
one. That is, give an algorithm constructing a spanning tree T in which,
for each u, v € V, the bottleneck rate of the u-v path in T is equal to the
best achievable bottleneck rate for the pair u, vin G.



Problem 4 (Extra Credit):

Let’s go back to the original motivation for the Minimum Spanning Tree
Problem. We are given a connected, undirected graph G = (V, E) with
positive edge lengths {£,}, and we want to find a spanning subgraph of
it. Now suppose we are willing to settle for a subgraph H = (V, F) that is
“denser” than a tree, and we are interested in guaranteeing that, for each
pair of vertices u,v €V, the length of the shortest u-v path in H is not
much longer than the length of the shortest u-v path in G. By the length
of a path P here, we mean the sum of ¢, over all edges e in P.

Here’s a variant of Kruskal’s Algorithm designed to produce such a
subgraph.
¢ First we sort all the edges in order of increasing length. (You may
assume all edge lengths are distinct.)
¢ We then construct a subgraph H = (V, F) by considering each edge in
order.
¢ When we come to edge e = (u, v), we add e to the subgraph H if there
is currently no u-v pathin H. (This is what Kruskal’s Algorithm would
do as well.) On the other hand, if there is a u-v path in H, we let d,,
denote the length of the shortest such path; again, length is with
respect to the values {£.}. We add e to H if 3¢, < d,,.
In other words, we add an edge even when u and v are already in the same
connected component, provided that the addition of the edge reduces
their shortest-path distance by a sufficient amount.

Let H = (V, F) be the subgraph of G returned by the algorithm.

(@) Prove that for every pair of nodes u, v € V, the length of the shortest
u-v path in H is at most three times the length of the shortest u-v
path in G.

(b) Despite its ability to approximately preserve shortest-path distances,
the subgraph H produced by the algorithm cannot be too dense.
Let f(n) denote the maximum number of edges that can possibly
be produced as the output of this algorithm, over all n-node input
graphs with edge lengths. Prove that
lim @ =0.

n—00 nz



