
CSE 421 Intro to Algorithms Autumn 2017

Homework 2

Due Friday October 13, 4:00 pm

Problem 1: A popular game a few years ago was the Six Degrees of Kevin Bacon game in which people

would try to find the shortest path of co-appearances linking some arbitrary actor to Kevin Bacon;

similarly, in Mathematics, people proudly mention their Erdős number, how far they are away in the co-

authorship graph from Paul Erdős. In both of these there is a graph of people and edges between them

if they are socially connected in some way. Of course a single short path between v and w does not

necessarily describe a strong connection between them; it could be merely coincidental. However, if

there are a lot of ways in which two people are connected by a shortest path then that suggests a much

stronger connection. Suppose that the task instead is to compute the number of shortest paths between v

and w.

It turns that this can be done efficiently. Suppose that you are given a graph G=(V,E) and two nodes v

and w in G. Give an algorithm that computes the number of shortest paths between v and w in G in

time O(n+m) where n is the number of vertices and m is the number of edges in G. (The algorithm

will not be able to exactly list all such paths since there may be many more of them than the time

bound.) Justify the running time bound of your algorithm.

Problem 2: Your company has been consulted by Homeland Security to do risk analysis for networks.

In particular, Homeland Security is interested in determining whether there are single points of network

failure v in the following sense, if node v stopped working then an emergency broadcast message sent

from one of the nodes other than v would not make it to all the remaining nodes in the network (and, to

find what single points of failure exist so that they can be corrected). The issue seems familiar and you

recall that your Algorithms instructor suggested that an extension of recursive depth-first search will do

the job for problems like this.

Show how to modify the code for recursive depth-first search of undirected graphs to (i) assign each

node v a number, dfsnum(v), indicating the sequence number for when it was first visited by depth-first

search, and (ii) compute smallest(v) for each node v, the smallest dfsnum of any node that was

encountered in the recursive call DFS(v).

Show how to determine whether or not v is a single point of network failure in a connected network by

comparing dfsnum(v) and smallest(w) for the children w of v in the DFS tree. (You will need a separate

simpler condition for the root of the DFS.)

Problem 3:

Problem 4 (Extra Credit)

