CSE 421: Introduction to Algorithms

Stable Matching

Paul Beame
Goal: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a self-reinforcing admissions process.

Unstable pair: applicant x and hospital y are unstable if:

- x prefers y to their assigned hospital.
- y prefers x to one of its admitted residents.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital side deal from being made.
Simpler: Stable Matching Problem

- **Goal.** Given n hetero men and n hetero women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

Men's Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
<td>Amy</td>
<td>Claire</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yuri</td>
<td>Xavier</td>
<td>Zoran</td>
</tr>
<tr>
<td>Brenda</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
</tr>
<tr>
<td>Claire</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
</tr>
</tbody>
</table>
Stable Matching Problem

- **Perfect matching**: everyone is matched monogamously.
 - Each man gets exactly one woman.
 - Each woman gets exactly one man.

- **Stability**: no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair m-w is unstable if man m and woman w prefer each other to current partners.
 - Unstable pair m-w could each improve by eloping.

- **Stable matching**: perfect matching with no unstable pairs.

- **Stable matching problem**: Given the preference lists of n men and n women, find a stable matching if one exists.
Stable Matching Problem

- Q. Is assignment X-C, Y-B, Z-A stable?

![Preference Profiles]

Men's Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
<td>Amy</td>
<td>Claire</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yuri</td>
<td>Xavier</td>
<td>Zoran</td>
</tr>
<tr>
<td>Brenda</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
</tr>
<tr>
<td>Claire</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
</tr>
</tbody>
</table>
Stable Matching Problem

- **Q.** Is assignment X-C, Y-B, Z-A stable?
- **A.** No. Brenda and Xavier will hook up.

<table>
<thead>
<tr>
<th>Men's Preference Profile</th>
<th>Women's Preference Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Xavier</td>
<td>Amy</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
</tr>
</tbody>
</table>
Stable Matching Problem

Q. Is assignment X-A, Y-B, Z-C stable?

A. Yes.
Stable Roommate Problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.
- $2n$ people; each person ranks others from 1 to $2n-1$.
- Assign roommate pairs so that no unstable pairs.

Observation. Stable matchings do not always exist for stable roommate problem.
Propose-And-Reject Algorithm

- Propose-and-reject algorithm. [Gale-Shapley 1962]
 Intuitive method that guarantees to find a stable matching.

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged, and m' to be free
 else
 w rejects m
}
Proof of Correctness: Termination

- **Observation 1.** Men propose to women in decreasing order of preference.

- **Observation 2.** Once a woman is matched, she never becomes unmatched; she only "trades up."

- **Claim.** Algorithm terminates after at most n^2 iterations of while loop.
- **Proof.** Each time through the while loop a man proposes to a new woman. There are only n^2 possible proposals. ▪

<table>
<thead>
<tr>
<th>Victor</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Walter</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>Xavier</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>Yuri</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>Zoran</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amy</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
</tr>
<tr>
<td>Brenda</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>Claire</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>Diane</td>
<td>Z</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Erika</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

$n(n-1) + 1$ proposals required
Proof of Correctness: Perfection

- **Claim.** All men and women get matched.
- **Proof.** (by contradiction)
 - Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
 - Then some woman, say Amy, is not matched upon termination.
 - By Observation 2 (only trading up, never becoming unmatched), Amy was never proposed to.
 - But, Zoran proposes to everyone, since he ends up unmatched. ▪
Proof of Correctness: Stability

Claim. No unstable pairs.

Proof. (by contradiction)

- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S^*.

- Case 1: Z never proposed to A.
 \Rightarrow Z prefers his GS partner to A.
 \Rightarrow A-Z is stable.

- Case 2: Z proposed to A.
 \Rightarrow A rejected Z (right away or later)
 \Rightarrow A prefers her GS partner to Z.
 \Rightarrow A-Z is stable.

- In either case A-Z is stable, a contradiction. \blacksquare
Summary

- **Stable matching problem.** Given n men and n women, and their preferences, find a stable matching if one exists.

- **Gale-Shapley algorithm.** Guarantees to find a stable matching for any problem instance.

- **Q.** How to implement GS algorithm efficiently?

- **Q.** If there are multiple stable matchings, which one does GS find?
Implementation for Stable Matching Algorithms

- Problem size
 - \(N = 2n^2 \) words
 - \(2n \) people each with a preference list of length \(n \)
 - \(2n^2 \log n \) bits
 - specifying an ordering for each preference list takes \(n \log n \) bits

- Brute force algorithm
 - Try all \(n! \) possible matchings
 - Do any of them work?

- Gale-Shapley Algorithm
 - \(n^2 \) iterations, each costing constant time as follows:
Efficient Implementation

- **Efficient implementation.** We describe $O(n^2)$ time implementation.

- Representing men and women.
 - Assume men are named $1, \ldots, n$.
 - Assume women are named $1', \ldots, n'$.

- Engagements.
 - Maintain a list of free men, e.g., in a queue.
 - Maintain two arrays $\text{wife}[m]$, and $\text{husband}[w]$.
 - set entry to 0 if unmatched
 - if m matched to w then $\text{wife}[m]=w$ and $\text{husband}[w]=m$

- Men proposing.
 - For each man, maintain a list of women, ordered by preference.
 - Maintain an array $\text{count}[m]$ that counts the number of proposals made by man m.
Efficient Implementation

- Women rejecting/accepting.
 - Does woman w prefer man m to man m'?
 - For each woman, create inverse of preference list of men.
 - Constant time access for each query after $O(n)$ preprocessing per woman. $O(n^2)$ total reprocessing cost.

For each woman, create inverse of preference list of men.

\[
\begin{array}{cccccccc}
\text{Amy} & 1^{\text{st}} & 2^{\text{nd}} & 3^{\text{rd}} & 4^{\text{th}} & 5^{\text{th}} & 6^{\text{th}} & 7^{\text{th}} & 8^{\text{th}} \\
\text{Pref} & 8 & 3 & 7 & 1 & 4 & 5 & 6 & 2 \\
\text{Inverse} & 4^{\text{th}} & 8^{\text{th}} & 2^{\text{nd}} & 5^{\text{th}} & 6^{\text{th}} & 7^{\text{th}} & 3^{\text{rd}} & 1^{\text{st}} \\
\end{array}
\]

for $i = 1$ to n

\[
\text{inverse}[\text{pref}[i]] = i
\]

Amy prefers man 3 to 6 since $\text{inverse}[3] = 2 < 7 = \text{inverse}[6]$
Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.

- A-X, B-Y, C-Z.
- A-Y, B-X, C-Z.
Understanding the Solution

- **Q.** For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

- **Def.** Man m is a valid partner of woman w if there exists some stable matching in which they are matched.

- **Man-optimal assignment.** Each man receives best valid partner (according to his preferences).

- **Claim.** All executions of GS yield a man-optimal assignment, which is a stable matching!
 - No reason a priori to believe that man-optimal assignment is perfect, let alone stable.
 - Simultaneously best for each and every man.
Man Optimality

- **Claim.** GS matching S^* is man-optimal.
- **Proof.** (by contradiction)
 - Suppose some man is paired with someone other than his best partner. Men propose in decreasing order of preference \Rightarrow some man is rejected by a valid partner.
 - Let Y be the man who is the first such rejection, and let A be the women who is first valid partner that rejects him.
 - Let S be a stable matching where A and Y are matched.
 - In building S^*, when Y is rejected, A forms (or reaffirms) engagement with a man, say Z, whom she prefers to Y.
 - Let B be Z's partner in S.
 - In building S^*, Z is not rejected by any valid partner at the point when Y is rejected by A.
 - Thus, Z prefers A to B.
 - But A prefers Z to Y.
 - Thus $A-Z$ is unstable in S. □

since this is the first rejection by a valid partner
Stable Matching Summary

- **Stable matching problem.** Given preference profiles of \(n \) men and \(n \) women, find a stable matching. No man and woman prefer to be with each other than with their assigned partner.

- **Gale-Shapley algorithm.** Finds a stable matching in \(O(n^2) \) time.

- **Man-optimality.** In version of GS where men propose, each man receives best valid partner. \(w \) is a valid partner of \(m \) if there exist some stable matching where \(m \) and \(w \) are paired.

- **Q.** Does man-optimality come at the expense of the women?
Woman Pessimality

- Woman-pessimal assignment. Each woman receives worst valid partner.

- Claim. GS finds woman-pessimal stable matching S^*.

- Proof.
 - Suppose $A-Z$ matched in S^*, but Z is not worst valid partner for A.
 - There exists stable matching S in which A is paired with a man, say Y, whom she likes less than Z.
 - Let B be Z's partner in S.
 - Z prefers A to B. \textbf{man-optimality of S^*}
 - Thus, $A-Z$ is an unstable in S. \hfill \blacksquare
Extensions: Matching Residents to Hospitals

- **Ex:** Men \(\approx\) hospitals, Women \(\approx\) med school residents.

- **Variant 1.** Some participants declare others as unacceptable.

- **Variant 2.** Unequal number of men and women.

- **Variant 3.** Limited polygamy.

- **Def.** Matching \(S\) is **unstable** if there is a hospital \(h\) and resident \(r\) such that:
 - \(h\) and \(r\) are acceptable to each other; and
 - either \(r\) is unmatched, or \(r\) prefers \(h\) to her assigned hospital; and
 - either \(h\) does not have all its places filled, or \(h\) prefers \(r\) to at least one of its assigned residents.

- **e.g.** resident \(A\) unwilling to work in Cleveland
- **e.g.** hospital \(X\) wants to hire 3 residents
Application: Matching Residents to Hospitals

- NRMP. (National Resident Matching Program)
 - Original use just after WWII.
 - Ides of March, 23,000+ residents.

- Rural hospital dilemma.
 - Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
 - Rural hospitals were under-subscribed in NRMP matching.
 - How can we find stable matching that benefits "rural hospitals"?

- Rural Hospital Theorem. Rural hospitals get exactly same residents in every stable matching!

- Note: Pre-1995 NRMP favored hospitals (they proposed). Changed in 1995 to favor residents.
Lessons Learned

- Powerful ideas learned in course.
 - Isolate underlying structure of problem.
 - Create useful and efficient algorithms.

- Potentially deep social ramifications.

[legal disclaimer]
Q. Can there be an incentive to misrepresent your preference profile?

- Assume you know men’s propose-and-reject algorithm will be run.
- Assume that you know the preference profiles of all other participants.

Fact. No, for any man. Yes, for some women. No mechanism can guarantee a stable matching and be cheatproof.
Extra Slides
Stable Matching Problem

- **Goal:** Given \(n \) men and \(n \) women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

Men's Preference List

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victor</td>
<td>Brenda</td>
<td>Amy</td>
<td>Diane</td>
<td>Erika</td>
</tr>
<tr>
<td>Walter</td>
<td>Diane</td>
<td>Brenda</td>
<td>Amy</td>
<td>Claire</td>
</tr>
<tr>
<td>Xavier</td>
<td>Brenda</td>
<td>Erika</td>
<td>Claire</td>
<td>Diane</td>
</tr>
<tr>
<td>Yuri</td>
<td>Amy</td>
<td>Diane</td>
<td>Claire</td>
<td>Brenda</td>
</tr>
<tr>
<td>Zoran</td>
<td>Brenda</td>
<td>Diane</td>
<td>Amy</td>
<td>Erika</td>
</tr>
</tbody>
</table>
Stable Matching Problem

- **Goal:** Given n men and n women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

<table>
<thead>
<tr>
<th>Women's Preference List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>Amy</td>
</tr>
<tr>
<td>Brenda</td>
</tr>
<tr>
<td>Claire</td>
</tr>
<tr>
<td>Diane</td>
</tr>
<tr>
<td>Erika</td>
</tr>
</tbody>
</table>