CSE 421: Introduction to Algorithms

Complexity and Representative Problems

Paul Beame
Measuring efficiency: The RAM model

- RAM = Random Access Machine

- Time \approx # of instructions executed in an ideal assembly language
 - each simple operation ($+,\cdot, -, =, if, call$) takes one time step
 - each memory access takes one time step
Complexity analysis

- Problem size N
 - **Worst-case complexity**: \max # steps algorithm takes on any input of size N
 - **Best-case complexity**: \min # steps algorithm takes on any input of size N
 - **Average-case complexity**: avg # steps algorithm takes on inputs of size N
Stable Matching

- **Problem size**
 - \(N=2n^2 \) words
 - \(2n \) people each with a preference list of length \(n \)
 - \(2n^2 \log n \) bits
 - specifying an ordering for each preference list takes \(n \log n \) bits

- **Brute force algorithm**
 - Try all \(n! \) possible matchings

- **Gale-Shapley Algorithm**
 - \(n^2 \) iterations, each costing constant time
 - For each man an array listing the women in preference order
 - For each woman an array listing the preferences indexed by the names of the men
 - An array listing the current partner (if any) for each woman
 - An array listing the preference index of the last woman each man proposed to (if any)
Complexity

- The complexity of an algorithm associates a number $T(N)$, the worst/average-case/best time the algorithm takes, with each problem size N.

- Mathematically,
 - T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.
Efficient = Polynomial Time

- Polynomial time
 - Running time $T(N) \leq cN^k + d$ for some $c, d, k \geq 0$

- Why polynomial time?
 - If problem size grows by at most a constant factor then so does the running time
 - E.g. $T(2N) \leq c(2N)^k + d \leq 2^k(cN^k + d)$
 - Polynomial-time is exactly the set of running times that have this property

- Typical running times are small degree polynomials, mostly less than N^3, at worst N^6, not N^{100}
Complexity

Time

Problem size N

$T(N)$
Complexity

Time

Problem size \(N \)

\(T(N) \)
Given two positive functions f and g

- $f(N)$ is $O(g(N))$ iff there is a constant $c > 0$ so that $f(N)$ is eventually always $\leq c \cdot g(N)$
- $f(N)$ is $o(g(N))$ iff the ratio $f(N)/g(N)$ goes to 0 as N gets large
- $f(N)$ is $\Omega(g(N))$ iff there is a constant $\varepsilon > 0$ so that $f(N)$ is $\geq \varepsilon \cdot g(N)$ for infinitely many values of N
- $f(N)$ is $\Theta(g(N))$ iff $f(N)$ is $O(g(N))$ and $f(N)$ is $\Omega(g(N))$

Note: The definition of Ω is the same as “$f(N)$ is not $o(g(N))$”
Administrative

- **Reading**
 - Chapter 2, start Chapter 3 by Wednesday

- **Homework 1**
 - Posted on website.
 - Due Friday at 4:00 on Canvas.

- **Office hours:**
 - TAs: M 2:30, Tu 11:00, W 12:00, 2:30, Th 10:30, 12:30, 2:00
5 Representative Problems

- Interval Scheduling
 - Single resource
 - Reservation requests
 - Of form “Can I reserve it from start time s to finish time f?”
 - $s < f$
Interval Scheduling

- **Input.** Set of jobs with start times and finish times.
- **Goal.** Find maximum cardinality subset of mutually compatible jobs.

![Diagram of jobs and time intervals](image)
Interval scheduling

Formally

- Requests 1, 2, ..., n
 - Request i has start time s_i and finish time $f_i > s_i$

- Requests i and j are compatible iff either
 - Request i is for a time entirely before request j
 - $f_i \leq s_j$
 - or, request j is for a time entirely before request i
 - $f_j \leq s_i$

- Set A of requests is compatible iff every pair of requests $i, j \in A, i \neq j$ is compatible

Goal: Find maximum size subset A of compatible requests
We’ll see that an optimal solution can be found using a “greedy algorithm”

- Myopic kind of algorithm that seems to have no look-ahead

- These algorithms only work when the problem has a special kind of structure

- When they do work they are typically very efficient
Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight w_i.
 - w_i might be:
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used
Weighted Interval Scheduling

- **Input.** Set of jobs with start times, finish times, and weights.
- **Goal.** Find maximum weight subset of mutually compatible jobs.
Weighted Interval Scheduling

- Ordinary interval scheduling is a special case of this problem
 - Take all $w_i = 1$

- Problem is quite different though
 - E.g. one weight might dwarf all others

- “Greedy algorithms” don’t work

- Solution: “Dynamic Programming”
 - builds up optimal solutions from smaller problems using a compact table to store them
A graph $G=(V,E)$ is bipartite iff

- V consists of two disjoint pieces X and Y such that every edge e in E is of the form (x,y) where $x \in X$ and $y \in Y$

- Similar to stable matching situation but in that case all possible edges were present

$M \subseteq E$ is a matching in G iff no two edges in M share a vertex

- **Goal**: Find a matching M in G of maximum possible size
Bipartite Matching

- **Input.** Bipartite graph.
- **Goal.** Find maximum cardinality matching.
Bipartite Matching

- Models assignment problems
 - X represents jobs, Y represents machines
 - X represents professors, Y represents courses

- If \(|X| = |Y| = n\)
 - G has perfect matching iff maximum matching has size n

- **Solution**: polynomial-time algorithm using “augmentation” technique
 - also used for solving more general class of network flow problems
Independent Set

- Given a graph $G=(V,E)$
 - A set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge

- **Goal:** Find an independent subset I in G of maximum possible size

- Models conflicts and mutual exclusion
Independent Set

- **Input.** Graph.
- **Goal.** Find *maximum cardinality* independent set.

![Graph Diagram]

Vertices: 1, 2, 3, 4, 5, 6, 7

Edges: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (3, 6), (4, 5), (4, 7), (5, 6), (6, 7)

Find the maximum cardinality independent set.
Independent Set

- Generalizes
 - Interval Scheduling
 - Vertices in the graph are the requests
 - Vertices are joined by an edge if they are not compatible

- Bipartite Matching
 - Given bipartite graph $G = (V, E)$ create new graph $G' = (V', E')$ where
 - $V' = E$
 - Two elements of V' (which are edges in G) are joined if they share an endpoint in G
Bipartite Matching vs Independent Set

\[G = (U \cup V, E) \]

\[G' = (V', E') \]
Independent Set

- No polynomial-time algorithm is known
 - But to convince someone that there was a large independent set all you’d need to do is show it to them
 - they can easily convince themselves that the set is large enough and independent
 - Convincing someone that there isn’t one seems much harder

- We will show that Independent Set is NP-complete
 - Class of all the hardest problems that have the property above
Competitive Facility Location

- Two players competing for market share in a geographic area
 - e.g. McDonald’s, Burger King
- Rules:
 - Region is divided into \(n \) zones, \(1,\ldots,n \)
 - Each zone \(i \) has a value \(b_i \)
 - Revenue derived from opening franchise in that zone
 - No adjacent zones may contain a franchise
 - i.e., zoning regulations limit density
 - Players alternate opening franchises
- Find: Given a target total value \(B \) is there a strategy for the second player that always achieves \(\geq B \)?
Competitive Facility Location

- Model geography by
 - A graph $G = (V, E)$ where
 - V is the set $\{1, \ldots, n\}$ of zones
 - E is the set of pairs (i, j) such that i and j are adjacent zones

- Observe:
 - The set of zones with franchises will form an independent set in G
Competitive Facility Location

Target $B = 20$ achievable?

What about $B = 25$?
Competitive Facility Location

- Checking that a strategy is good seems hard
 - You’d have to worry about all possible responses at each round!
 - a giant search tree of possibilities

- Problem is PSPACE-complete
 - Likely strictly harder than NP-complete problems
 - PSPACE-complete problems include
 - Game-playing problems such as \(n \times n \) chess and checkers
 - Logic problems such as whether quantified boolean expressions are always true
 - Verification problems for finite automata
Five Representative Problems

- Variations on a theme: independent set.

- Interval scheduling: $O(n \log n)$ greedy algorithm.

- Weighted interval scheduling: $O(n \log n)$ dynamic programming algorithm.

- Bipartite matching: $O(n^k)$ max-flow based algorithm.

- Independent set: NP-complete.

- Competitive facility location: PSPACE-complete.