CSE 421: Introduction to Algorithms

Complexity and Representative Problems

Paul Beame

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time ≈ # of instructions executed in an ideal assembly language
 - each simple operation (+,*,-,=,if,call) takes one time step
 - each memory access takes one time step

Complexity analysis

- Problem size N
 - Worst-case complexity: max # steps algorithm takes on any input of size N
 - Best-case complexity: min # steps algorithm takes on any input of size N
 - Average-case complexity: avg # steps algorithm takes on inputs of size N

Stable Matching

- Problem size
 - N=2n² words
 - 2n people each with a preference list of length n
 - 2n²log n bits
 - specifying an ordering for each preference list takes nlog n bits
- Brute force algorithm
 - Try all n! possible matchings
- Gale-Shapley Algorithm
 - n² iterations, each costing constant time
 - For each man an array listing the women in preference order
 - For each woman an array listing the preferences indexed by the names of the men
 - An array listing the current partner (if any) for each woman
 - An array listing the preference index of the last woman each man proposed to (if any)

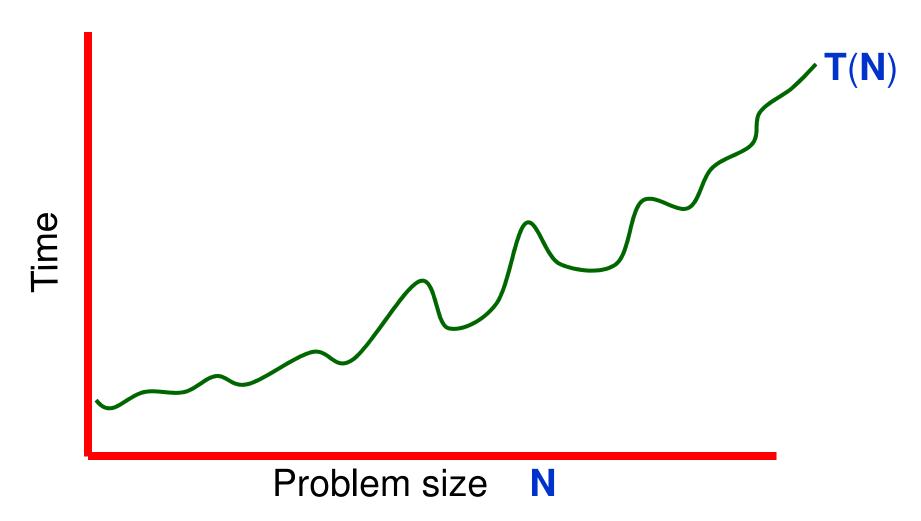
Complexity

- The complexity of an algorithm associates a number T(N), the worst/average-case/best time the algorithm takes, with each problem size N.
- Mathematically,
 - T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

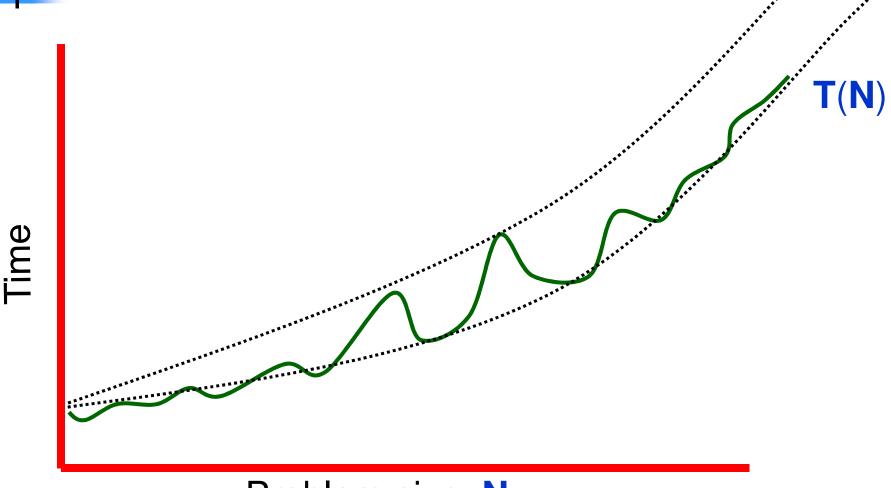
Efficient = Polynomial Time

- Polynomial time
 - Running time $T(N) \le cN^k + d$ for some $c,d,k \ge 0$
- Why polynomial time?
 - If problem size grows by at most a constant factor then so does the running time
 - E.g. $T(2N) \le c(2N)^k + d \le 2^k (cN^k + d)$
 - Polynomial-time is exactly the set of running times that have this property
 - Typical running times are small degree polynomials, mostly less than N³, at worst N6, not N¹00

Complexity



Complexity



Problem size N

O-notation etc

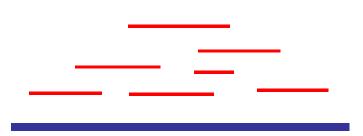
- Given two positive functions f and g
 - f(N) is O(g(N)) iff there is a constant c>0 so that f(N) is eventually always ≤ c g(N)
 - f(N) is o(g(N)) iff the ratio f(N)/g(N) goes to 0 as N gets large
 - f(N) is Ω(g(N)) iff there is a constant ε>0 so that f(N) is ≥ ε g(N) for infinitely many values of N
 - f(N) is $\Theta(g(N))$ iff f(N) is O(g(N)) and f(N) is $\Omega(g(N))$

Note: The definition of Ω is the same as "f(N) is **not** o(g(N))"

Administrative

- Reading
 - Chapter 2, start Chapter 3 by Wednesday
- Homework 1
 - Posted on website.
 - Due Friday at 4:00 on Canvas.
- Office hours:
 - Me: MW 5:20-5:50, W 3:30-4:20
 - TAs: M 2:30, Tu 11:00, W 12:00, 2:30,
 Th 10:30, 12:30, 2:00

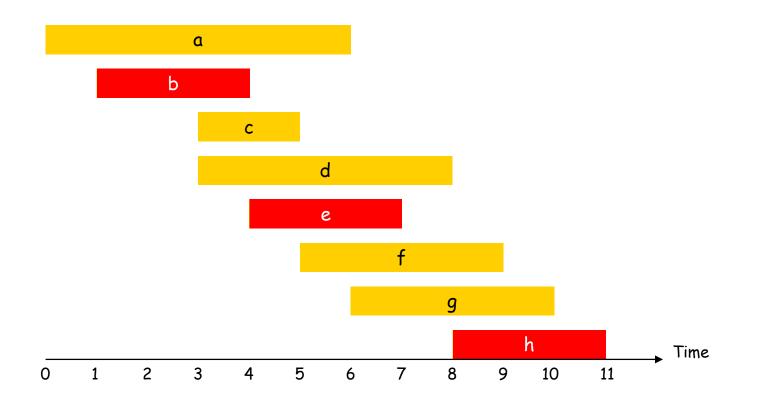
- Interval Scheduling
 - Single resource



- Reservation requests
 - Of form "Can I reserve it from start time s to finish time f?"
 - **S** < **f**

Interval Scheduling

- Input. Set of jobs with start times and finish times.
- Goal. Find maximum cardinality subset of mutually compatible jobs.



Interval scheduling

- Formally
 - Requests 1,2,...,n
 - request i has start time s_i and finish time f_i > s_i
 - Requests i and j are compatible iff either
 - request i is for a time entirely before request j

- or, request j is for a time entirely before request i
 - $f_j \leq s_i$
- Set A of requests is compatible iff every pair of requests i,j∈ A, i≠j is compatible
- Goal: Find maximum size subset A of compatible requests

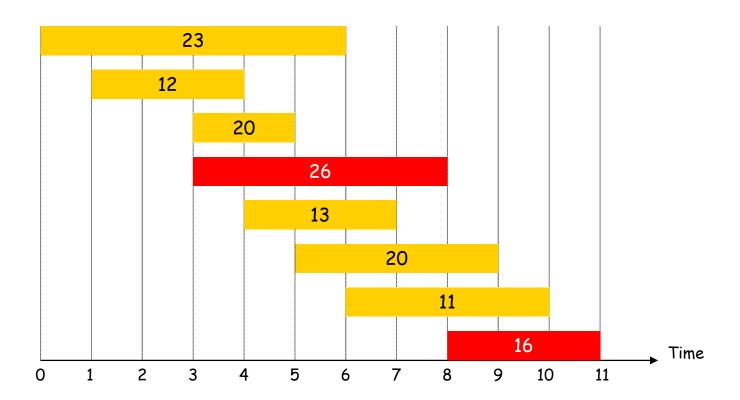
Interval Scheduling

- We'll see that an optimal solution can be found using a "greedy algorithm"
 - Myopic kind of algorithm that seems to have no look-ahead
 - These algorithms only work when the problem has a special kind of structure
 - When they do work they are typically very efficient

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
 - w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used

- Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.



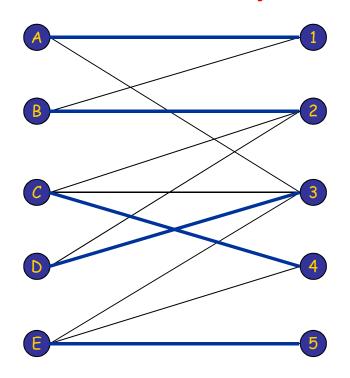
Weighted Interval Scheduling

- Ordinary interval scheduling is a special case of this problem
 - Take all w_i =1
- Problem is quite different though
 - E.g. one weight might dwarf all others
- "Greedy algorithms" don't work
- Solution: "Dynamic Programming"
 - builds up optimal solutions from smaller problems using a compact table to store them

Bipartite Matching

- A graph G=(V,E) is bipartite iff
 - V consists of two disjoint pieces X and Y such that every edge e in E is of the form (x,y) where x∈ X and y∈ Y
 - Similar to stable matching situation but in that case all possible edges were present
- MCE is a matching in G iff no two edges in M share a vertex
 - Goal: Find a matching M in G of maximum possible size

- Input. Bipartite graph.
- Goal. Find maximum cardinality matching.

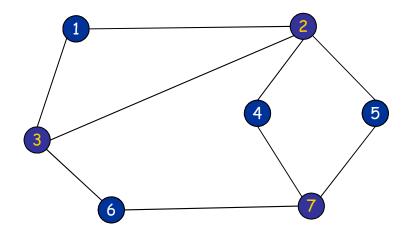


Bipartite Matching

- Models assignment problems
 - X represents jobs, Y represents machines
 - X represents professors, Y represents courses
- If |X|=|Y|=n
 - G has perfect matching iff maximum matching has size n
- Solution: polynomial-time algorithm using "augmentation" technique
 - also used for solving more general class of network flow problems

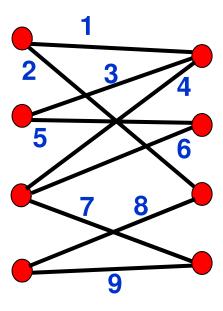
- Given a graph G=(V,E)
 - A set I⊆V is independent iff no two nodes in I are joined by an edge
- Goal: Find an independent subset I in G of maximum possible size
- Models conflicts and mutual exclusion

- Input. Graph.
- Goal. Find maximum cardinality independent set.

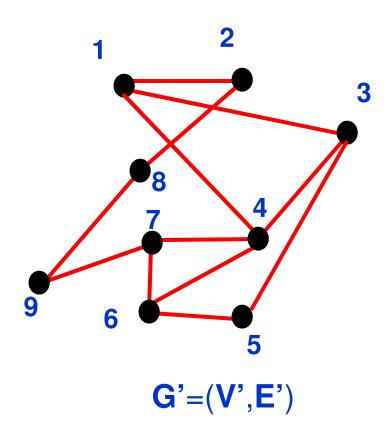


- Generalizes
 - Interval Scheduling
 - Vertices in the graph are the requests
 - Vertices are joined by an edge if they are not compatible
 - Bipartite Matching
 - Given bipartite graph G=(V,E) create new graph G'=(V',E') where
 - V'=E
 - Two elements of V' (which are edges in G) are joined if they share an endpoint in G

Bipartite Matching vs Independent Set



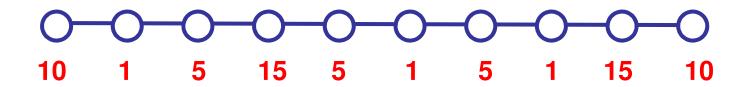
$$G=(U\cup V,E)$$



- No polynomial-time algorithm is known
 - But to convince someone that there was a large independent set all you'd need to do is show it to them
 - they can easily convince themselves that the set is large enough and independent
 - Convincing someone that there isn't one seems much harder
- We will show that Independent Set is NP-complete
 - Class of all the hardest problems that have the property above

- Two players competing for market share in a geographic area
 - e.g. McDonald's, Burger King
- Rules:
 - Region is divided into n zones, 1,...,n
 - Each zone i has a value b_i
 - Revenue derived from opening franchise in that zone
 - No adjacent zones may contain a franchise
 - i.e., zoning regulations limit density
 - Players alternate opening franchises
- Find: Given a target total value B is there a strategy for the second player that always achieves ≥ B?

- Model geography by
 - A graph G=(V,E) where
 - V is the set {1,...,n} of zones
 - E is the set of pairs (i,j) such that i and j are adjacent zones
- Observe:
 - The set of zones with franchises will form an independent set in G



Target B = 20 achievable?

What about B = 25?

- Checking that a strategy is good seems hard
 - You'd have to worry about all possible responses at each round!
 - a giant search tree of possibilities
- Problem is PSPACE-complete
 - Likely strictly harder than NP-complete problems
 - PSPACE-complete problems include
 - Game-playing problems such as n×n chess and checkers
 - Logic problems such as whether quantified boolean expressions are always true
 - Verification problems for finite automata

Five Representative Problems

- Variations on a theme: independent set.
- Interval scheduling: O(n log n) greedy algorithm.
- Weighted interval scheduling: O(n log n) dynamic programming algorithm.
- Bipartite matching: O(nk) max-flow based algorithm.
- Independent set: NP-complete.
- Competitive facility location: PSPACE-complete.