
1

CSE 421: Introduction to

Algorithms

Greedy Algorithms

Paul Beame

2

Greedy Algorithms

� Hard to define exactly but can give general

properties

� Solution is built in small steps

� Decisions on how to build the solution are made to

maximize some criterion without looking to the

future

� Want the ‘best’ current partial solution as if the

current step were the last step

� May be more than one greedy algorithm

using different criteria to solve a given

problem

3

Greedy Algorithms

� Greedy algorithms
� Easy to produce
� Fast running times
� Work only on certain classes of problems

� Hard part is showing that they are correct

� Two methods for proving that greedy algorithms
do work
� Greedy algorithm stays ahead

� At each step any other algorithm will have a worse
value for some criterion that eventually implies
optimality

� Exchange Argument
� Can transform any other solution to the greedy

solution at no loss in quality

4

Interval Scheduling

� Interval Scheduling
� Single resource

� Reservation requests

� Of form “Can I reserve it from start time
s to finish time f?”

� s <<<< f

5

Interval Scheduling

� Interval scheduling.

� Job j starts at sj and finishes at fj>sj.

� Two jobs i and j compatible if they don't overlap: fi ≤ sj or fj ≤ si

� Goal: find maximum size subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

6

Greedy Algorithms for Interval
Scheduling

� What criterion should we try?

� Earliest start time si

� Shortest request time fi-si

� Earliest finish fime fi

7

Greedy Algorithms for Interval
Scheduling

� What criterion should we try?
� Earliest start time si

� Doesn’t work

� Shortest request time fi-si

� Doesn’t work

� Even fewest conflicts doesn’t work

� Earliest finish fime fi

� Works

8

Greedy Algorithm for Interval
Scheduling

R←set of all requests

A←∅∅∅∅

While R≠∅∅∅∅ do

Choose request i∈∈∈∈R with smallest
finishing time fi

Add request i to A

Delete all requests in R that are not
compatible with request i

Return A

9

Greedy Algorithm for Interval
Scheduling

� Claim: A is a compatible set of requests and
these are added to A in order of finish time
� When we add a request to A we delete all

incompatible ones from R

� Claim: For any other set O⊆⊆⊆⊆R of compatible
requests then if we order requests in A and O
by finish time then for each k:
� If O contains a kth request then so does A and

� the finish time of the kth request in A, is ≤≤≤≤ the
finish time of the kth request in O, i.e. “ak ≤≤≤≤ ok”
where ak and ok are the respective finish times

Enough to prove that A is optimal

10

Inductive Proof of Claim: ak≤≤≤≤ok

� Base Case: This is true for the first request in A since
that is the one with the smallest finish time

� Inductive Step: Suppose ak≤≤≤≤ok
� By definition of compatibility

� If O contains a k+1st request r then the start time of that
request must be after ok and thus after ak

� Thus r is compatible with the first k requests in A
� Therefore

� A has at least k+1 requests since a compatible one is
available after the first k are chosen

� r was among those considered by the greedy algorithm for
that k+1st request in A

� Therefore by the greedy choice the finish time of r which
is ok+1 is at least the finish time of that k+1st request in A
which is ak+1

11

Interval Scheduling: Analysis

Therefore we have:

� Theorem. Greedy algorithm is optimal.

� Alternative Proof. (by contradiction)
� Assume greedy is not optimal, and let's see what happens.

� Let a1, a2, ... at denote set of jobs selected by greedy.

� Let o1, o2, ... om denote set of jobs in the optimal solution with
a1 = o1, a2 = o2, ..., ak = ok for the largest possible value of k.

o1 o2 ok

a1 a1 ak ak+1

. . .

Greedy:

OPT: ok+1

why not replace job ok+1

with job ak+1?

job ak+1 finishes before ok+1

12

Sort jobs by finish times so that 0 ≤≤≤≤ f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

A ←←←← φφφφ

last ←←←← 0

for j = 1 to n {

if (last ≤≤≤≤ sj)

A ←←←← A ∪∪∪∪ {j}

last ←←←← fj
}

return A

Interval Scheduling: Greedy
Algorithm Implementation

O(n log n)

O(n)

13

Scheduling All Intervals:
Interval Partitioning

� Interval partitioning.

� Lecture j starts at sj and finishes at fj.

� Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

� Example: This schedule uses 4 classrooms to schedule 10
lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

14

Interval Partitioning

� Interval partitioning.

� Lecture j starts at sj and finishes at fj.

� Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

� Example: This schedule uses only 3 classrooms

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

15

Interval Partitioning: Lower Bound
on Optimal Solution

� Definition. The depth of a set of open intervals is the maximum number
that contain any given time.

� Key observation. Number of classrooms needed ≥ depth.

� Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

� Q. Does there always exist a schedule equal to depth of intervals?

Time

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

16

A simple greedy algorithm

Sort requests in increasing order of start times (s1,f1),…,(sn,fn)

For i=1 to n
j←1
While (request i not scheduled)

lastj← finish time of the last request
currently scheduled on resource j

if si≥lastj then schedule request i on
resource j
j←j+1

End While
End For

17

Interval Partitioning: Greedy
Analysis

� Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom.

� Theorem. Greedy algorithm is optimal.

� Proof.
� Let d = number of classrooms that the greedy algorithm

allocates.

� Classroom d is opened because we needed to schedule a job,
say j, that is incompatible with all d-1 other classrooms.

� Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than sj.

� Thus, we have d lectures overlapping at time sj + εεεε.

� Key observation ⇒ all schedules use ≥≥≥≥ d classrooms. ▪

18

A simple greedy algorithm

Sort requests in increasing order of start times (s1,f1),…,(sn,fn)

For i=1 to n
j←1
While (request i not scheduled)

lastj← finish time of the last request
currently scheduled on resource j

if si≥lastj then schedule request i on
resource j
j←j+1

End While
End For

O(n log n) time

May be slow

O(nd)
which may be Ω(n2)

19

A more efficient implementation

Sort requests in increasing order of start times (s1,f1),…,(sn,fn)

d ←←←← 1

Schedule request 1 on resource 1

last1←←←←f1

Insert 1 into priority queue Q with key = last1

For i=2 to n

j ←findmin(Q)

if si≥lastj then

schedule request i on resource j

lastj ←←←← fi

Increasekey(j,Q) to lastj

else

d ←←←← d+1

schedule request i on resource d

lastd←←←←fi

Insert d into priority queue Q with key = lastd

End For

O(n log n) time

O(n log d)

O(n log n)

20

Greedy Analysis Strategies

� Greedy algorithm stays ahead. Show that after each
step of the greedy algorithm, its solution is at least as
good as any other algorithm's.

� Exchange argument. Gradually transform any
solution to the one found by the greedy algorithm
without hurting its quality.

� Structural. Discover a simple "structural" bound
asserting that every possible solution must have a
certain value. Then show that your algorithm always
achieves this bound.

21

Scheduling to Minimize Lateness

� Scheduling to minimize lateness
� Single resource as in interval scheduling but instead of start

and finish times request i has
� Time requirement ti which must be scheduled in a

contiguous block
� Target deadline di by which time the request would like

to be finished
� Overall start time s

� Requests are scheduled by the algorithm into time intervals
[si,fi] such that ti=fi-si

� Lateness of schedule for request i is
� If di <<<< fi then request i is late by Li= fi-di otherwise its

lateness Li= 0
� Maximum lateness L=maxi Li

� Goal: Find a schedule for all requests (values of si and fi for
each request i) to minimize the maximum lateness, L

22

Scheduling to Minimizing Lateness

� Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

23

Minimizing Lateness: Greedy
Algorithms

� Greedy template. Consider jobs in some order.

� [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

� [Earliest deadline first] Consider jobs in ascending
order of deadline dj.

� [Smallest slack] Consider jobs in ascending order
of slack dj - tj.

24

� Greedy template. Consider jobs in some order.

� [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

� [Smallest slack] Consider jobs in ascending order
of slack dj - tj.

Minimizing Lateness: Greedy
Algorithms

counterexample

dj

tj

100

1

1

10

10

2

counterexampledj

tj

2

1

1

10

10

2

25

Greedy Algorithm:
Earliest Deadline First

� Order requests in increasing order of
deadlines

� Schedule the request with the earliest
deadline as soon as the resource
becomes available

26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort deadlines in increasing order (d1 ≤≤≤≤ d2 ≤≤≤≤ … ≤≤≤≤ dn)

f ← s

for i←←←←1 to n to

si ←←←←f

fi ←←←← si+ti

f←←←←fi

end for

Minimizing Lateness: Greedy
Algorithm

� Greedy algorithm. Earliest deadline first.

27

Proof for Greedy Algorithm:
Exchange Argument

� We will show that if there is another
schedule O (think optimal schedule)
then we can gradually change O so that

� at each step the maximum lateness in O

never gets worse

� it eventually becomes the same cost as A

28

Minimizing Lateness: No Idle Time

� Observation. There exists an optimal schedule with
no idle time.

� Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

29

Minimizing Lateness: Inversions

� Definition. An inversion in schedule S is a pair of
jobs i and j such that di < dj but j scheduled before i.

� Observation. Greedy schedule has no inversions.

� Observation. If a schedule (with no idle time) has an
inversion, it has one with a pair of inverted jobs
scheduled consecutively (by transitivity of <).

ijbefore swap

inversion

30

Minimizing Lateness: Inversions

� Definition. An inversion in schedule S is a pair of

jobs i and j such that di < dj but j scheduled before i.

� Claim. Swapping two adjacent, inverted jobs

reduces the number of inversions by one and does

not increase the max lateness.

ij

i j

before swap

after swap

f'j

fi

inversion

31

Minimizing Lateness: Inversions

� If dj >>>> di but j is scheduled in O immediately

before i then swapping requests i and j to get

schedule O’ does not increase the maximum

lateness

� Lateness Li’≤≤≤≤ Li since i is scheduled earlier in O’
than in O

� Requests i and j together occupy the same total

time slot in both schedules

� All other requests k≠≠≠≠i,j have Lk’=Lk

� fj’=fi so Lj’= f’j-dj =fi-dj<<<< fi-di=Li

� Maximum lateness has not increased!

32

Optimal schedules and inversions

� Claim: There is an optimal schedule
with no idle time and no inversions

� Proof:

� By previous argument there is an optimal

schedule O with no idle time

� If O has an inversion then it has a

consecutive pair of requests in its

schedule that are inverted and can be

swapped without increasing lateness

33

Optimal schedules and inversions

� Eventually these swaps will produce an
optimal schedule with no inversions

� Each swap decreases the number of

inversions by 1

� There are a bounded number of (at most

n(n-1)/2) inversions (we only care that this

is finite.)

QED

34

Idleness and Inversions are the only
issue

� Claim: All schedules with no inversions and no idle
time have the same maximum lateness

� Proof
� Schedules can differ only in how they order requests with

equal deadlines

� Consider all requests having some common deadline d

� Maximum lateness of these jobs is based only on the finish
time of the last of these jobs but the set of these requests
occupies the same time segment in both schedules

� Last of these requests finishes at the same time in any
such schedule.

35

Earliest Deadline First is optimal

� We know that
� There is an optimal schedule with no idle

time or inversions

� All schedules with no idle time or
inversions have the same maximum
lateness

� EDF produces a schedule with no idle time
or inversions

� Therefore
� EDF produces an optimal schedule

36

Single-source shortest paths

� Given an (un)directed graph G=(V,E)
with each edge e having a non-negative
weight w(e) and a vertex v

� Find length of shortest paths from v to
each vertex in G

37

A greedy algorithm

� Dijkstra’s Algorithm:
� Maintain a set S of vertices whose shortest paths

are known

� initially S={s}

� Maintaining current best lengths of paths that only

go through S to each of the vertices in G

� path-lengths to elements of S will be right, to

V-S they might not be right

� Repeatedly add vertex v to S that has the shortest

path-length of any vertex in V-S

� update path lengths based on new paths

through v

38

Dijsktra’s Algorithm

Dijkstra(G,w,s)

S←{s}

d[s]←0

while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one
with the minimum value of d[u]+w(e)

S←S∪ {v}

d[v]←d[u]+w(e)

pred[v]←u

*For each v∉S maintain d’[v]=minimum value of
d[u]+w(e) over all vertices u∈S s.t. e=(u,v) is in of G

39

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

40

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

41

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

42

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

43

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

44

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

45

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

46

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

47

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

48

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

49

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

50

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

51

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

52

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

53

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

54

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

55

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

56

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

57

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

58

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

59

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

60

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

61

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

62

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Update distances

63

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

Add to S

64

Dijkstra’s Algorithm Correctness

Suppose all distances to vertices in S are correct

and u has smallest current value in V-S

d’(v)≤ d’(x)

x-v path length ≥ 0

∴distance value of vertex in V-S=length of shortest path from s

with only last edge leaving S

s

v

x
S Suppose some other

path to v and x= first vertex

on this path not in S

∴ other path is longer

Therefore adding v to S keeps correct distances

65

Dijkstra’s Algorithm

� Algorithm also produces a tree of
shortest paths to v following pred links

� From w follow its ancestors in the tree

back to v

� If all you care about is the shortest path
from v to w simply stop the algorithm
when w is added to S

66

Dijsktra’s Algorithm

Dijkstra(G,w,s)

S←{s}

d[s]←0

while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one
with the minimum value of d[u]+w(e)

S←S∪ {v}

d[v]←d[u]+w(e)

pred[v]←u

*For each v∉S maintain d’[v]=minimum value of
d[u]+w(e) over all vertices u∈S s.t. e=(u,v) is in of G

67

Implementing Dijkstra’s Algorithm

� Need to

� keep current distance values for nodes in

V-S

� find minimum current distance value

� reduce distances when vertex moved to S

68

Data Structure Review

� Priority Queue:
� Elements each with an associated key
� Operations

� Insert
� Find-min

� Return the element with the smallest key

� Delete-min
� Return the element with the smallest key and delete it from the data

structure

� Decrease-key
� Decrease the key value of some element

� Implementations
� Arrays: O(n) time find/delete-min, O(1) time insert/

decrease-key

� Heaps: O(log n) time insert/decrease-key/delete-min, O(1) time
find-min

69

Dijkstra’s Algorithm with Priority
Queues

� For each vertex u not in tree maintain cost of

current cheapest path through tree to u

� Store u in priority queue with key = length

of this path

� Operations:

� n-1 insertions (each vertex added once)

� n-1 delete-mins (each vertex deleted once)

� pick the vertex of smallest key, remove it from

the priority queue and add its edge to the graph

� <m decrease-keys (each edge updates one

vertex)

70

Dijskstra’s Algorithm with Priority
Queues

� Priority queue implementations
� Array

� insert O(1), delete-min O(n), decrease-key O(1)

� total O(n+n2+m)=O(n2)

� Heap

� insert, delete-min, decrease-key all O(log n)

� total O(m log n)

� d-Heap (d=m/n)

� insert, decrease-key O(logm/n n)

� delete-min O((m/n) logm/n n)

� total O(m logm/n n)

71

Minimum Spanning Trees (Forests)

� Given an undirected graph G=(V,E) with
each edge e having a weight w(e)

� Find a subgraph T of G of minimum
total weight s.t. every pair of vertices
connected in G are also connected in T

� if G is connected then T is a tree otherwise

it is a forest

72

Weighted Undirected Graph

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

73

Greedy Algorithm

� Prim’s Algorithm:

� start at a vertex s

� add the cheapest edge adjacent to s

� repeatedly add the cheapest edge that

joins the vertices explored so far to the rest

of the graph

� Exactly like Dijsktra’s Algorithm but with a

different metric

74

Dijsktra’s Algorithm

Dijkstra(G,w,s)

S←{s}

d[s]←0

while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one
with the minimum value of d[u]+w(e)

S←S∪ {v}

d[v]←d[u]+w(e)

pred[v]←u

*For each v∉S maintain d’[v]=minimum value of
d[u]+w(e) over all vertices u∈S s.t. e=(u,v) is in of G

75

Prim’s Algorithm

Prim(G,w,s)

S←{s}

while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one
with the minimum value of w(e)

S←S∪ {v}

pred[v]←u

*For each v∉S maintain small[v]=minimum value of w(e)
over all vertices u∈S s.t. e=(u,v) is in of G

76

Second Greedy Algorithm

� Kruskal’s Algorithm

� Start with the vertices and no edges

� Repeatedly add the cheapest edge that

joins two different components. i.e. that

doesn’t create a cycle

77

Why greed is good

� Definition: Given a graph G=(V,E), a cut of

G is a partition of V into two non-empty

pieces, S and V-S

� Lemma: For every cut (S,V-S) of G, there is

a minimum spanning tree (or forest)

containing any cheapest edge crossing the

cut, i.e. connecting some node in S with

some node in V-S.

� call such an edge safe

78

Cuts and Spanning Trees

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

79

The greedy algorithms always
choose safe edges

� Prim’s Algorithm

� Always chooses cheapest edge from

current tree to rest of the graph

� This is cheapest edge across a cut which

has the vertices of that tree on one side.

80

Prim’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

81

The greedy algorithms always
choose safe edges

� Kruskal’s Algorithm

� Always chooses cheapest edge connecting

two pieces of the graph that aren’t yet

connected

� This is the cheapest edge across any cut

which has those two pieces on different

sides and doesn’t split any current pieces.

82

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

83

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

84

Why greed is good

� Definition: Given a graph G=(V,E), a cut of

G is a partition of V into two non-empty

pieces, S and V-S

� Lemma: For every cut (S,V-S) of G, there is

a minimum spanning tree (or forest)

containing any cheapest edge crossing the

cut, i.e. connecting some node in S with

some node in V-S.

� call such an edge safe

85

Proof of Lemma:
An Exchange Argument

Suppose you have an MST T not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

86

Proof of Lemma

e
u

v

Endpoints of e, u and v must be connected in T

Suppose you have an MST T not using cheapest edge e

87

Proof of Lemma

Suppose you have an MST T not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

h

88

Proof of Lemma

Suppose you have an MST T not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

w(e)≤w(h)

h

89

Proof of Lemma

Replacing h by e does not increase weight of T

e
u

v

h

w(e)≤w(h)

All the same points are connected by the new tree

90

Kruskal’s Algorithm
Implementation & Analysis

� First sort the edges by weight O(m log m)

� Go through edges from smallest to largest

� if endpoints of edge e are currently in

different components

� then add to the graph

� else skip

� Union-find data structure handles last part

� Total cost of last part: O(m α(n)) where

α(n) ≪≪≪≪ log m

� Overall O(m log n)

91

Union-find disjoint sets data
structure

� Maintaining components

� start with n different components

� one per vertex

� find components of the two endpoints of e

� 2m finds

� union two components when edge

connecting them is added

� n-1 unions

92

Prim’s Algorithm with Priority
Queues

� For each vertex u not in tree maintain current

cheapest edge from tree to u

� Store u in priority queue with key = weight

of this edge

� Operations:

� n-1 insertions (each vertex added once)

� n-1 delete-mins (each vertex deleted once)

� pick the vertex of smallest key, remove it from

the p.q. and add its edge to the graph

� <m decrease-keys (each edge updates one

vertex)

93

Prim’s Algorithm with Priority
Queues

� Priority queue implementations
� Array

� insert O(1), delete-min O(n), decrease-key O(1)

� total O(n+n2+m)=O(n2)

� Heap

� insert, delete-min, decrease-key all O(log n)

� total O(m log n)

� d-Heap (d=m/n)

� insert, decrease-key O(logm/n n)

� delete-min O((m/n) logm/n n)

� total O(m logm/n n)

94

Boruvka’s Algorithm (1927)

� A bit like Kruskal’s Algorithm
� Start with n components consisting of a

single vertex each

� At each step, each component chooses its
cheapest outgoing edge to add to the
spanning forest

� Two components may choose to add the
same edge

� Useful for parallel algorithms since
components may be processed (almost)
independently

95

Many other minimum spanning tree
algorithms, most of them greedy

� Cheriton & Tarjan

� O(m loglog n) time using a queue of

components

� Chazelle

� O(m α(m) log α(m)) time

� Incredibly hairy algorithm

� Karger, Klein & Tarjan

� O(m+n) time randomized algorithm that

works most of the time

96

Applications of Minimum Spanning
Tree Algorithms

� Minimum cost network design:
� Build a network to connect all locations

{v1,…,vn}

� Cost of connecting vi to vj is w(vi,vj)>0

� Choose a collection of links to create that
will be as cheap as possible

� Any minimum cost solution is an MST

� If there is a solution containing a cycle
then we can remove any edge and get a
cheaper solution

97

Applications of Minimum Spanning
Tree Algorithms

� Maximum Spacing Clustering
� Given

� a collection U of n objects {p1,…,pn}

� Distance measure d(pi,pj) satisfying

� d(pi,pi)=0

� d(pi,pj)>0 for i≠j

� d(pi,pj)=d(pj,pi)

� Positive integer k≤n

� Find a k-clustering, i.e. partition of U into k clusters
C1,…,Ck, such that the spacing between the
clusters is as large possible where

spacing = min{d(pi,pj): pi and pj in different
clusters}

98

Greedy Algorithm

� Start with n clusters each consisting of a single point

� Repeatedly find the closest pair of points in different
clusters under distance d and merge their clusters
until only k clusters remain

� Gets the same components as Kruskal’s Algorithm
does!
� The sequence of closest pairs is exactly the MST

� Alternatively we could run Kruskal’s algorithm once
and for any k we could get the maximum spacing
k-clustering by deleting the k-1 most expensive
edges in the MST

99

Proof that this works

� Removing the k-1 most expensive edges from an
MST yields k components C1,…,Ck and the spacing
for them is precisely the cost d* of the k-1st most
expensive edge in the tree

� Consider any other k-clustering C’1,…,C’k
� Since they are different and cover the same set of points

there is some pair of points pi,pj such that pi,pj are in some
cluster Cr but pi, pj are in different clusters C’s and C’t

� Since pi,pj ∈∈∈∈Cr, pi and pj have a path between them
all of whose edges have distance at most d*

� This path must cross between clusters in the C’
clustering so the spacing in C’ is at most d*

100

Optimal Caching/Paging

� Memory systems
� many levels of storage with different access times

� smaller storage has shorter access time

� to access an item it must be brought to the lowest
level of the memory system

� Consider the management problem between
adjacent levels
� Main memory with n data items from a set U
� Cache can hold k<<<<n items

� Simplest version with no direct-mapping or other
restrictions about where items can be

� Suppose cache is full initially

� Holds k data items to start with

101

Optimal Offline Caching

� Caching.
� Cache with capacity to store k items.

� Sequence of m item requests d1, d2, …, dm.

� Cache hit: item already in cache when requested.

� Cache miss: item not already in cache when requested:
must bring requested item into cache, and evict some
existing item, if full.

� Goal. Eviction schedule that minimizes number
of cache misses (actually, # of evictions).

� Example: k = 2, initial cache = ab,
requests: a, b, c, b, c, a, a, b.

� Optimal eviction schedule: 2 cache misses.

a b

a b

c b

c b

c b

a b

a

b

c

b

c

a

a ba

a bb

cacherequests

102

Optimal Offline Caching: Farthest-In-
Future

� Farthest-in-future. Evict item in the cache that is not
requested until farthest in the future.

� Theorem. [Bellady, 1960s] FIF is an optimal eviction
schedule.

� Proof. Algorithm and theorem are intuitive; proof is
subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ...

current cache: c d e f

future queries:

cache miss eject this one

103

Other Algorithms

� Often there is flexibility, e.g.

� k=3, C={a,b,c}

� D= a b c d a d e a d b c

� SFIF= c b e d

� S = b c d e

� Why aren’t other algorithms better?

� Least-Frequenty-Used-In-Future?

� Exchange Argument

� We can swap choices to convert other schedules

to Farthest-In-Future without losing quality

104

Reduced Eviction Schedules

� Definition. A reduced schedule is a schedule that only inserts an item

into the cache in a step in which that item is requested.

� Intuition. Can transform an unreduced schedule into a reduced one

with no more cache misses.

a x

an unreduced schedule

c

a d c

a d b

a c b

a x b

a c b

a b c

a b c

a

c

d

a

b

c

a

a

a b

a reduced schedule

c

a b c

a d c

a d c

a d b

a c b

a c b

a c b

a

c

d

a

b

c

a

a

a b ca a b ca

105

Reduced Eviction Schedules

� Claim. Given any unreduced schedule S, can transform it into a

reduced schedule S' with no more cache misses.

� Proof. (by induction on number of unreduced items)

� Suppose S brings d into the cache at time t, without a request.

� Let c be the item S evicts when it brings d into the cache.

� Case 1: d evicted at time t', before next request for d.

� Case 2: d requested at time t' before d is evicted. ▪

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d evicted at time t',
before next request

e

Case 1

d

Case 2

c c

d

106

Farthest-In-Future: Analysis

� Theorem. FIF is optimal eviction algorithm.

� Proof. (by induction on number or requests j)

� Let S be reduced schedule that satisfies invariant through j requests.

We produce S' that satisfies invariant after j+1 requests.

� Consider (j+1)st request d = dj+1.

� Since S and SFIF have agreed up until now, they have the same cache

contents before request j+1.

� Case 1: (d is already in the cache). S' = S satisfies invariant.

� Case 2: (d is not in the cache and S and SFIF evict the same element).

S' = S satisfies invariant.

Invariant: There exists an optimal reduced schedule S that makes
the same eviction schedule as SFIF through the first j+1 requests.

107

Farthest-In-Future: Analysis

� Proof. (continued)

� Case 3: (d is not in the cache; SFIF evicts e; S evicts f ≠≠≠≠ e).

� begin construction of S' from S by evicting e instead of f

� now S' agrees with SFIF on first j+1 requests; we show that

having element f in cache is no worse than having element e

� Continue building S’ to be the same as S until forced to be

different

j same f same fee

S S'

j same d same fde

S S'

j+1

evicted by SFIF

108

Farthest-In-Future: Analysis

� Let j' be the first time after j+1 that S and S' must take a different

action, and let g be item requested at time j'.

� Case 3a: g = e. Can't happen: e was evicted by Farthest-In-Future so

there must be a request for f before e.

� Case 3b: g = f. Element f can't be in cache of S, so let e' be the element

that S evicts.

� if e' = e, S' accesses f from cache; now S and S' have same cache

� if e' ≠≠≠≠ e, S' evicts e' and brings e into the cache; now S and S' have the

same cache

Note: S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFIF through step j+1

must involve e or f (or both)

same e same f

S S'

j'

109

Farthest-In-Future: Analysis

� Let j' be the first time after j+1 that S and S' must take a different

action, and let g be item requested at time j'.

� Case 3c: g ≠≠≠≠ e and g ≠≠≠≠ f. S must evict e.

Make S' evict f; now S and S' have the same cache. ▪

same g same g

S S'

j'

otherwise S' would take the same action

same e same f

S S'

j'

must involve e or f (or both)

In each case can now extend S’ using rest of S at no extra cost.

S’ is optimal, reduced, and agrees with SFIF for j+1 steps

Optimality of SFIF follows by induction.

110

Caching Perspective

� Online vs. offline algorithms.
� Offline: full sequence of requests is known a priori.

� Online (reality): requests are not known in advance.

� Caching is among most fundamental online problems in CS.

� LIFO. Evict page brought in most recently.
� LRU. Evict page whose most recent access was earliest.

� Theorem. FIF is optimal offline eviction algorithm.
� Provides basis for understanding and analyzing online algorithms.

� LRU is k-competitive. [Section 13.8]

� LIFO is arbitrarily bad.

FIF with direction of time reversed!

111

Greedy Analysis Strategies

� Greedy algorithm stays ahead. Show that after each
step of the greedy algorithm, its solution is at least as
good as any other algorithm's.

� Exchange argument. Gradually transform any
solution to the one found by the greedy algorithm
without hurting its quality.

� Structural. Discover a simple "structural" bound
asserting that every possible solution must have a
certain value. Then show that your algorithm always
achieves this bound.

112

A Note on Optimal Caching

� In real operating conditions one typically needs an
on-line algorithm
� make the eviction decisions as each memory request arrives

� To design and analyze these algorithms it is also important to
understand how the best possible decisions can be made if one
did know the future

� Field of on-line algorithms compares the quality of
on-line decisions to that of the optimal off-line
schedule
� Bellady’s FIF algorithm tells us what an optimal schedule looks like

so we have a baseline to compare online algorithms

113

Belady’s Greedy Algorithm:
Farthest-In-Future

� Given sequence D=d1,d2,…,dm

� When di needs to be brought into the
cache evict the item that is needed
farthest in the future

� Let NextAccessi(d)=min{ j≥≥≥≥i : dj=d} be the

next point in D that item d will be requested

� Evict d such that NextAccessi(d) is largest

114

Optimal Caching/Paging

� Given a memory request d from U
� If d is stored in the cache we can access it quickly

� If not then we call it a cache miss and (since the
cache is full)

� we must bring it into cache and evict some
other data item from the cache

� which one to evict?

� Given a sequence D=d1,d2,…,dm of elements
from U corresponding to memory requests

� Find a sequence of evictions (an eviction
schedule) that has as few cache misses as
possible

115

Caching Example

� n=3, k=2, U={a,b,c}

� Cache initially contains {a,b}

� D= a b c b c a b

� S= a c

� C= a b a
b c b

� This is optimal

116

Interval scheduling

� Formally
� Requests 1,2,…,n

� request i has start time si and finish time fi >>>> si

� Requests i and j are compatible iff either

� request i is for a time entirely before request j

� fi ≤≤≤≤ sj

� or, request j is for a time entirely before

request i
� fj ≤≤≤≤ si

� Set A of requests is compatible iff every pair of
requests i,j∈ A, i≠≠≠≠j is compatible

� Goal: Find maximum size subset A of compatible
requests

117

Implementing the Greedy Algorithm

� Sort the requests by finish time
� O(nlog n) time

� Maintain current latest finish time scheduled

� Keep array of start times indexed by request
number

� Only eliminate incompatible requests as
needed
� Walk along array of requests sorted by finish times

skipping those whose start time is before current
latest finish time scheduled

� O(n) additional time for greedy algorithm

118

Scheduling all intervals

� Interval Partitioning Problem: We have

resources to serve more than one request at

once and want to schedule all the intervals

using as few of our resources as possible

� Obvious requirement: At least the depth of

the set of requests

