CSE 421: Introduction to

| Algorithms

Network Flow

Paul Beame

i Bipartite Matching

= QGiven: A bipartite graph G=(V,E)

= McE is a matching in G iff no two edges
iIn M share a vertex

= Goal: Find a matching M in G of
maximum possible size

i Bipartite Matching

i Bipartite Matching

i The Network Flow Problem

= How much stuff can flow from s to t?

Bipartite matching as a special case

ﬁ of flow

i Net Flow: Formal Definition

Given: Find:
A digraph G = (V,E) A flow function f: E — R s.t., for all
Two vertices s,tinv ~ WV:

(source & sink) « 0 <f(u,v) < c(u,v)
A Capacjty C(U,V) >0 [Capacity Constraint]
for each (U,V) e E « fu=st,i.e. fOUt(U)=f in(U)

(and c(u,v) = 0 for all [Flow Conservation]

non-edges (u,v)) Maximizing total flow v(f) = fout(s)

Notation:
fin(v) - Ze=(u,v)eEf(u!v) fOUt(V) - Ze=(v,w)eEf(v’w)

ﬁ Example: A Flow Function

flow/capacity, not .66...

B 2/2 () 2/3 0
fin(u)=f(s,u)=2=f(u,t)=fout(u)

i Example: A Flow Function

= Not shown: f(u,v) if =0

= Note: max flow = 4 since
f is a flow function, with v(f) = 4

i Max Flow via a Greedy Alg?

While there isan s — tpathin G
Pick such a path, p
Find c, the min capacity of any edge in p
Count ¢ towards the flow value
Subtract ¢ from all capacities on p
Delete edges of capacity 0

= This does NOT always find a max flow:

1 Aa)—2 If pick s b —a —t
O Jr 0

first, flow stuck at 2.
2 (o) But flow 3 possible.

10

A Brief History of Flow

| year | discoverer(s) bound
1 | 1951 | Dantzig O(n*mU)
2 | 1955 | Ford & Fulkerson O(nmU)
3 | 1970 | Dinitz O(nm?)
Edmonds & Karp
4 | 1970 | Dinitz O(n*m)
5 | 1972 | Edmonds & Karp O(m?* logU)
Dinitz
6 | 1973 | Dinitz Of{nmlogU)
Gabow
7 | 1974 | Karzanov o(n®
8 | 1977 | Cherkassky Ofn 2\/_)
9 | 1980 | Galil & Naamad O(nmlog” n)
10 | 1983 | Sleator & Tarjan O(nmlogn}
11 | 1986 | Goldberg & Tarjan O(nmlog(n®/m))
12 | 1987 | Ahuja & Orlin O(nm + n?logU)
13 | 1987 | Ahuja et al. O(nm log(n\/log U/(m + 2))
14 | 1989 | Cheriyan & Hagerup | E(nm + n?log” n)
15 | 1990 | Cheriyan et al. O(n®/logn)
16 | 1990 | Alon O(nm + n¥3 logn)
17 | 1992 | King et al. O(nm + nZTe)
18 | 1993 | Phillips & Westbrook | O(nm(log,,,, n + log” * n))
19 | 1994 | King et al. O(nmlog,, /(niogn) ™)
20 | 1997 | Goldberg & Rao O(m3/% log(n? /m)logU)
O(n**mlog(n?/m)loglU)
2012 Orlin + King et al. O(nm)

n = # of vertices
m= # of edges
U = Max capacity

Source: Goldberg & Rao,
FOCS ‘97

11

Greed Revisited:
i Residual Graph & Augmenting Path

9 1+1/2
1 1/1
/ 23 D /

2/2 I 1/1

&
p)

o
a
&

o
_

Residual Graph

12

Greed Revisited:
ﬁ An Augmenting Path

New Residual Graph

13

i Residual Capacity

= The residual capacity (w.r.t. f) of (u,v) Is
c;(u,v) = c(u,v) - f(u,v) ff(u,v)sc(u,v)
and c(u,v)=f(v,u) if f(v,u)>0

= €.0. C{s,b)=7; cia,x) =1; cq(x,a) =3

14

Residual Graph
| i & Augmenting Paths

= The residual graph (w.r.t. f) is the graph
G; = (V,E,), where
E;={(uv)|c{(uv)>0}
= Two kinds of edges
= Forward edges
s f(u,v)<c(u,v) so c(u,v)=c(u,v)-f(u,v)>0
« Backward edges
x f(U,v)>0 so civ,u) > -f(v,u)=f(u,v)>0
= An augmenting path (w.r.t. f) is a simple
s — t path in G;.

15

i A Residual Network

16

i An Augmenting Path

17

i Augmenting A Flow

augment(f,P)

Cp<—Ming, yep C(U,V) “Dottleneck(P)”

for each ee P
If e is a forward edge then
increase f(e) by cp
else (e is a backward edge)
decrease f(e) by cp
endif
endfor
return(f)

18

i Augmenting A Flow

i Claim 7.1

If G; has an augmenting path P, then the
function f=augment(f,P) is a legal flow.

Proof:

= " and f differ only on the edges of P so
only need to consider such edges (u,v)

20

i Proof of Claim 7.1

= If (u,v) is a forward edge then
f'(u,v)=f(u,v)+cp < f(u,v)+cs(u,v)
= f(u,v)+c(u,v)-f(u,v)
=c(u,Vv)
= If (u,v) is a backward edge then f and f’
differ on flow along (v,u) instead of (u,v)
f'(v,u)=f(v,u)-cp = f(v,u)-c,(u,v)
= f(v,u)-f(v,u)=0
= Other conditions like flow conservation
still met

21

i Ford-Fulkerson Method

Start with f=0 for every edge

While G; has an augmenting path,
augment

= Questions:
= Does it halt?
= Does it find a maximum flow?
= How fast?

22

Observations about Ford-Fulkerson

i Algorithm

= At every stage the capacities and flow values
are always integers (if they start that way)

= The flow value v(f’)=v(f)+cp>Vv(f) for
f’=augment(f,P)

= Since edges of residual capacity 0 do not appear
in the residual graph

L Let C=Z(S,U)EE C(S,U)
M V(f)SC

» F-F does at most C rounds of augmentation since
flows are integers and increase by at least 1 per
step

23

i Running Time of Ford-Fulkerson

= For f=0, Gf=G

= Finding an augmenting path in G; is
graph search O(h+m)=0(m) time

= Augmenting and updating G; is O(n)
time

= Total O(mC) time

= Does it find a maximum flow?

= Need to show that for every flow f that isn’t
maximum G; contains an s-t-path

24

i Cuts

= A partition (A,B) of V is an s-t-cut if
n SceA, teB

ﬁ Convenient Definition

= fOUt(A)=Zve A, wegA f(v,w)

@ fin(A)=Z, p uea f(UV)

26

i Claims 7.6 and 7.8

= For any flow f and any cut (A,B),
= the net flow across the cut equals the total
flow, i.e., v(f) = fout(A)-fin(A), and

= the net flow across the cut cannot exceed
the capacity of the cut,
i.e. fout(A)-fin(A) < c(A,B)

= Corollary : | 1 = m -3
Max flow < Min cut 1 Net Flow = 1
1 CutCap =2

Net Flow = 1
27

4

Proof of Claim 7.6

Consider a set A with seA, t¢ A

fout(A)-Fi(A) =Xy p wen (V. W)-Zyen uea f(UV)

We can add flow values for edges with both
endpoints in A to both sums and they would cancel
out so

fOUt(A)'fin(A)= Z“ve A, weV f (V,W)-ZVE A, ueV f (U,V)
= Z:veA (ZWEV f (V,W) B ZUEV f (U,V))

=X a fout (v) - fin(v)
=fout(s)_fin(s)

since all other vertices have fout(v)=fi"(v)
v(f) = fout(s) and fi"(s)=0

28

ﬁ Proof of Claim 7.8

= v(f)=fout(A)-fin(A)
< fout(A)

= ZVEA, we A f (V,W)
S Z"veA, we A C sz)

AN

< ZVE A, weB C(V,W)
=Cc(A,B)

29

i Max Flow / Min Cut Theorem

Claim 7.9 For any flow f, if G; has no
augmenting path then there is some s-t-cut
(A,B) such that v(f)=c(A,B) (proof on next slide)

= We know by Claims 7.6 & 7.8 that any flow f’ satisfies
v(f’) < ¢(A,B) and we know that F-F runs for finite

time until it finds a flow f satisfying conditions of
Claim 7.9

« Therefore by 7.9 for any flow £, v(f’) <v(f)

= Corollary (1) F-F computes a maximum flow in G

(2) For any graph G, the value v(f) of a maximum
flow = minimum capacity c(A,B) of any s-t-cut in G

30

i Claim 7.9

Let A={u|dan pathin G; fromsto u}
B=V-A:seAteB

saturated
f(u,v)=c(u,v)

no flow
f(w,u)=0

This is true for every edge crossing the cut, i.e.

" (A) = f(u,v) => c(u,v) =c(A,B) and f"(A)=0 so
A ue A v(f)=fou(A)-fin(A)=c(A,B)

31

i Flow Integrality Theorem

If all capacities are integers
= [The max flow has an integer value

= Ford-Fulkerson method finds a max flow In
which f(u,v) is an integer for all edges (u,v)

32

i Corollaries & Facts

» |f Ford-Fulkerson terminates, then it's
found a max flow.

= It will terminate if c(e) integer or rational
(but may not if they’re irrational).

= However, may take exponential time,
even with integer capacities:

G 1 t c = 10°, say

33

Bipartite matching as a special case

| i of flow
1 1

1 1 1
K ~®s %
(O— >(2)

Integer flows implies each flow is just a subset of the edges

Therefore flow corresponds to a matching

O(mC)=0(nm) running time

34

i Capacity-scaling algorithm

= General idea:

= Choose augmenting paths P with ‘large’
capacity cp
= Can augment flows along a path P by any
amount A <cp
« Ford-Fulkerson still works

= Get a flow that is maximum for the high-
order bits first and then add more bits later

35

i Capacity Scaling

36

i Capacity Scaling

100

111 =® 100

110 001

37

i Capacity Scaling Bit 1

Capacity on each edge is at most 1
(either 0 or 1 times A=4)

38

i Capacity Scaling Bit 1

O(nm) time

39

i Capacity Scaling Bit 2

Residual capacity across min cut is at most m
(either 0 or 1 times A=2)

40

Capacity Scaling Bit 2

Residual capacity across min cut is at most m

= < m augmentations

41

i Capacity Scaling Bit 3

010/100

] 010/011
010/011

1) 100/100 —~110/111

> >Q/ >
100/11
00170 10011%@/
100/101 ™

100/101

Residual capacity across min cut is at most m
(either 0 or 1 times A=1)

42

i Capacity Scaling Bit 3

010/100

] 010/011
011/011

5 100/100 >, 11/111

> >Q/ >
101/11
S0 05 110011W
101/101

101/101

After < m augmentations

43

i Capacity Scaling Final

44

i Capacity Scaling Min Cut

45

i Total time for capacity scaling

= log, U rounds where U is largest capacity

= At most m augmentations per round

= Let c; be the capacities used in the it" round and f;
be the maxflow found in the it" round

« For any edge (u,v), ¢;,{(u,v) < 2c;(u,v)+1
» i+18tround starts with flow f=2Tf,
= Let (A,B) be a min cut from the it round

= v(f;)=c,(A,B) so v(f)=2c;(A,B)
s V(F,) <c,4(A,B) <2¢,(A,B)+m =v(f)+m

= O(m) time per augmentation
= Total time O(m? log U)

46

i Edmonds-Karp Algorithm

= Use a shortest augmenting path
(via Breadth First Search in residual graph)

= Time: O(n m?)

47

i BFS/Shortest Path Lemmas

Distance from s in G; is never reduced by:

Deleting an edge
Proof: no new (hence no shorter) path created

Adding an edge (u,v), provided v is nearer

than u
Proof: BFS is unchanged, since v visited before
(u,v) examined

<— aback edge

48

i Key Lemma

Let f be a flow, G; the residual graph, and
P a shortest augmenting path. Then no
vertex Is closer to s after augmentation

along P.

Proof: Augmentation along P only deletes
forward edges, or adds back edges that
go to previous vertices along P

49

i Augmentation vs BFS

i Theorem

The Edmonds-Karp Algorithm performs O(mn) flow
augmentations

Proof:

Call (u,v) critical for augmenting path P if it’s closest to
s having min residual capacity

It will disappear from G; after augmenting along P

In order for (u,v) to be critical again the (u,v) edge
must re-appear in G; but that will only happen
when the distance to u has increased by 2 (next slide)

It won't be critical again until farther from s

so each edge critical at most n/2 times
51

Critical Edges in G;

Shortest s-t path P in G;
>Cp Cc

—--- >EE@ cr) DGR _,@..E;@—» —0®

critical edge| d¢(s,v)=d;(s,u)+1 since this is a shortest path

After augmenting along P

>0
O 0 P S PO

For (u,v) to be critical later for some flow f’ it must be in G;.
so must have augmented along a shortest path containing (v,u)

& .
“““
* .
‘‘‘‘
. [%
....
llllll

Then we must have d;(s,u)=d.(s,v)+1 > di(s,v)+1=d(s,u)+2

52

i Corollary

= Edmonds-Karp runs in O(nm?) time

53

Project Selection
i a.k.a. The Strip Mining Problem

s Given

= a directed acyclic graph G=(V,E)
representing precedence constraints on
tasks (a task points to its predecessors)

= a profit value p(v) associated with each
task ve V (may be positive or negative)

s Find

= a set AcV of tasks that is closed under
predecessors, i.e. if (u,v)e E and ue A then

ve A, that maximizes Profit(A)=2,_A P(V)

54

ﬁ Project Selection Graph

(O @
e

| Each task points to its predecessor tasks |

55

ﬁ Extended Graph
®

i Extended Graph G’

(s)

For each vertex v

If p(v)>0 add (s,v) edge
with capacity p(v)

If p(v)<0 add (v,t) edge
with capacity —p(v)

57

Extended Graph G’

|

Want to arrange capacities on edges of G so that for
minimum s-t-cut (S,T) in G’, the set A=S-{s}

= satisfies precedence constraints

= has maximum possible profitin G

Cut capacity with S={s} is just C=2,. ;)50 P(V)
= Profit(A) < C for any set A
To satisfy precedence constraints don’'t want any

original edges of G going forward across the
minimum cut

= That would correspond to a task in A=S-{s} that had a
predecessor not in A=S-{s}

Set capacity of each of the edges of G to C+1
= The minimum cut has size at most C

58

ﬁ Extended Graph G’

<

13

(8
N

(-3)

/

—

@
®

Capacity C

59

ﬁ Extended Graph G’

Cut value

=13+3+2+3+4

=13+3
+C-4-8-10-11-12-14

60

i Project Selection

= Claim Any s-t-cut (S,T) in G’ such that
A=S-{s} satisfies precedence constraints has
capacity
c(S,T)=C - X,_A p(v) = C - Profit(A)

= Corollary A minimum cut (S,T) in G’ yields
an optimal solution A=S-{s} to the profit
selection problem

= Algorithm Compute maximum flow f in G’,
find the set S of nodes reachable from s in G’;
and return S-{s}

61

i Proof of Claim

= A=S-{s} satisfies precedence constraints

No edge of G crosses forward out of A since those
edges have capacity C+1

Only forward edges cut are of the form (v,t) for
ve A or (s,v) for vg A

The (v,t) edges for ve A contribute
Zve A:p(v)<0 'p(V) = - Z“ve A:p(v)<0 p(V)
The (s,v) edges for ve A contribute
Zve A: p(v)=0 p(V)=C'Z\,€ A: p(v)>0 p(V)
Therefore the total capacity of the cut is
c(S,T)=C - X,_4 p(v) =C-Profit(A)

62

