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CSE 421:  Introduction to 

Algorithms

Network Flow

Paul Beame



2

Bipartite Matching

� Given: A bipartite graph G=(V,E)

� M⊆⊆⊆⊆E is a matching in G iff no two edges 

in M share a vertex

� Goal: Find a matching M in G of   
maximum possible size
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Bipartite Matching
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Bipartite Matching
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� How much stuff can flow from s to t?

The Network Flow Problem
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Bipartite matching as a special case 
of flow

1

1

1

1

1

1

1

1

1

1

1

s

a

b

c

x

y

z

t



7

Net Flow: Formal Definition

Given:

A digraph G = (V,E)

Two vertices s,t in V
(source & sink)

A capacity c(u,v) ≥ 0
for each (u,v) ∈ E
(and c(u,v) = 0 for all      

non-edges (u,v))

Find:
A flow function f: E → R s.t., for all 
u,v:

� 0 ≤≤≤≤ f(u,v) ≤ c(u,v)
[Capacity Constraint]

� if u ≠ s,t, i.e. fout(u)=f in(u)
[Flow Conservation]

Maximizing total flow ν(f) = fout(s)

Notation:
out

e (v,w ) E
f (v) f(v, w)

= ∈
= ∑in

e (u,v) E
f (v) f(u,v)

= ∈
= ∑
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fin(u)=f(s,u)=2=f(u,t)=fout(u)

Example: A Flow Function

s u t
2/2 2/3

flow/capacity, not .66...



9

� Not shown: f(u,v) if = 0

� Note:  max flow ≥ 4 since
f is a flow function, with ν(f) = 4

Example: A Flow Function
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Max Flow via a Greedy Alg?

While there is an s → t path in G
Pick such a path, p
Find c, the min capacity of any edge in p
Count c towards the flow value

Subtract c from all capacities on p
Delete edges of capacity 0

� This does NOT always find a max flow:

s
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first, flow stuck at 2.
But flow 3 possible.
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A Brief History of Flow

n = # of vertices
m= # of edges
U = Max capacity

Source: Goldberg & Rao, 

FOCS ‘97

bound

2012     Orlin + King et al.           O(nm)
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Greed Revisited:
Residual Graph & Augmenting Path
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Greed Revisited:
An Augmenting Path
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Residual Capacity

� The residual capacity (w.r.t. f) of (u,v) is 
cf(u,v) = c(u,v) - f(u,v) if f(u,v)≤c(u,v) 
and cf(u,v)=f(v,u) if f(v,u)>0

� e.g. cf(s,b)=7; cf(a,x) = 1; cf(x,a) = 3
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Residual Graph
& Augmenting Paths

� The residual graph (w.r.t. f) is the graph 
Gf = (V,Ef), where                                    

Ef = { (u,v) | cf(u,v) > 0 }
� Two kinds of edges 

� Forward edges 

� f(u,v)<c(u,v) so cf(u,v)=c(u,v)-f(u,v)>0

� Backward edges 

� f(u,v)>0 so  cf(v,u) ≥ -f(v,u)=f(u,v)>0

� An augmenting path (w.r.t. f) is a simple 
s →→→→ t path in Gf.
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A Residual Network
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An Augmenting Path
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Augmenting A Flow

augment(f,P)

cP←min(u,v)∈∈∈∈P cf(u,v)     “bottleneck(P)”

for each e∈∈∈∈P

if e is a forward edge then

increase f(e) by cP

else (e is a backward edge)

decrease f(e) by cP

endif

endfor

return(f)
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Augmenting A Flow
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Claim 7.1

If Gf has an augmenting path P, then the 
function f’=augment(f,P) is a legal flow.

Proof: 

� f’ and f differ only on the edges of P so 
only need to consider such edges (u,v)
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Proof of Claim 7.1

� If (u,v) is a forward edge then 
f’(u,v)=f(u,v)+cP ≤≤≤≤ f(u,v)+cf(u,v) 

= f(u,v)+c(u,v)-f(u,v)  
=c(u,v)

� If (u,v) is a backward edge then f and f’
differ on flow along (v,u) instead of (u,v)
f’(v,u)=f(v,u)-cP ≥≥≥≥ f(v,u)-cf(u,v)            

= f(v,u)-f(v,u)=0

� Other conditions like flow conservation 
still met



22

Ford-Fulkerson Method

Start with f=0 for every edge

While Gf has an augmenting path, 
augment

� Questions:

� Does it halt?

� Does it find a maximum flow?

� How fast?
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Observations about Ford-Fulkerson
Algorithm

� At every stage the capacities and flow values 
are always integers (if they start that way)

� The flow value νννν(f’)=νννν(f)+cP>νννν(f) for 
f’=augment(f,P)
� Since edges of residual capacity 0 do not appear 

in the residual graph

� Let C=ΣΣΣΣ(s,u)∈∈∈∈E c(s,u)

� νννν(f)≤C

� F-F does at most C rounds of augmentation since 
flows are integers and increase by at least 1 per 
step
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Running Time of Ford-Fulkerson

� For f=0,  Gf=G

� Finding an augmenting path in Gf is 
graph search O(n+m)=O(m) time

� Augmenting and updating Gf is O(n)
time

� Total O(mC) time

� Does it find a maximum flow?
� Need to show that for every flow f that isn’t 

maximum Gf contains an s-t-path
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Cuts

� A partition (A,B) of V is an s-t-cut if 

� s∈∈∈∈A, t∈∈∈∈B

� Capacity of cut (A,B) is
∈
∈

=∑
u A
v B

c(A,B) c(u,v)
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Convenient Definition

� fout(A)=ΣΣΣΣv∈∈∈∈A, w∉∉∉∉A f (v,w)

� fin(A)=ΣΣΣΣv∈∈∈∈A, u∉∉∉∉A f (u,v)
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Claims 7.6 and 7.8

� For any flow f and any cut (A,B),

� the net flow across the cut equals the total 

flow, i.e., νννν(f) = fout(A)-fin(A), and   

� the net flow across the cut cannot exceed 

the capacity of the cut,                                 

i.e. fout(A)-fin(A) ≤ c(A,B)

� Corollary :

Max flow ≤ Min cut
1

s

t

1

1

1

1

Cut Cap  = 3

Net Flow = 1

Cut Cap  = 2

Net Flow = 1
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Proof of Claim 7.6

� Consider a set A with s∈∈∈∈A, t∉∉∉∉A

� fout(A)-fin(A) =ΣΣΣΣv∈∈∈∈A, w∉∉∉∉A f (v,w)-ΣΣΣΣv∈∈∈∈A, u∉∉∉∉A f (u,v)

� We can add flow values for edges with both 
endpoints in A to both sums and they would cancel 
out so

� fout(A)-fin(A)= ΣΣΣΣv∈∈∈∈A, w∈∈∈∈V f (v,w)-ΣΣΣΣv∈∈∈∈A, u∈∈∈∈V f (u,v)   

= ΣΣΣΣv∈∈∈∈A (ΣΣΣΣw∈∈∈∈V f (v,w) - ΣΣΣΣu∈∈∈∈V f (u,v))             

=ΣΣΣΣv∈∈∈∈A f
out (v) - fin(v)                       

=fout(s)-fin(s)

since all other vertices have fout(v)=fin(v)

� νννν(f) = fout(s) and fin(s)=0
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Proof of Claim 7.8

� νννν(f)=fout(A)-fin(A)                   
≤ fout(A)                                       

= ΣΣΣΣv∈∈∈∈A, w∉∉∉∉A f (v,w)                                  

≤ ΣΣΣΣv∈∈∈∈A, w∉∉∉∉A c(v,w)

≤ ΣΣΣΣv∈∈∈∈A, w∈∈∈∈B c(v,w) 

=c(A,B)
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Max Flow / Min Cut Theorem

Claim 7.9 For any flow f, if Gf has no 
augmenting path then there is some s-t-cut 
(A,B) such that νννν(f)=c(A,B)  (proof on next slide)

� We know by Claims 7.6 & 7.8 that any flow f’ satisfies 
νννν(f’) ≤ c(A,B) and we know that F-F runs for finite 
time until it finds a flow f satisfying conditions of 
Claim 7.9

� Therefore by 7.9 for any flow f’, νννν(f’) ≤νννν(f)

� Corollary (1) F-F computes a maximum flow in G

(2) For any graph G, the value νννν(f) of a maximum 

flow = minimum capacity c(A,B) of any s-t-cut in G
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Claim 7.9

Let A = { u | ∃ an path in Gf from s to u }

B = V - A;  s ∈∈∈∈ A, t ∈∈∈∈ B

This is true for every edge crossing the cut, i.e.  

and fin(A)=0 so   
νννν(f)=fout(A)-fin(A)=c(A,B)

s t

A         B

u v

∈ ∈
∈ ∈

= = =∑ ∑
out

u A u A
v B v B

f A f u,v c u,v c A,B( ) ( ) ( ) ( )

w

saturated
f(u,v)=c(u,v)

no flow
f(w,u)=0x
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Flow Integrality Theorem

If all capacities are integers

� The max flow has an integer value

� Ford-Fulkerson method finds a max flow in 

which f(u,v) is an integer for all edges (u,v)

ts

0.5/1

0.5/10.5/1

0.5/1

1/1
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Corollaries & Facts

� If Ford-Fulkerson terminates, then it’s 
found a max flow.

� It will terminate if c(e) integer or rational

(but may not if they’re irrational).

� However, may take exponential time, 
even with integer capacities:
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Bipartite matching as a special case 
of flow
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Capacity-scaling algorithm

� General idea:

� Choose augmenting paths P with ‘large’ 

capacity cP

� Can augment flows along a path P by any 

amount ∆∆∆∆ ≤≤≤≤cP 

� Ford-Fulkerson still works

� Get a flow that is maximum for the high-

order bits first and then add more bits later
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Capacity Scaling
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Capacity Scaling
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Capacity Scaling Bit 1
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1/111

Capacity Scaling Bit 1
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Capacity Scaling Bit 2
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Capacity Scaling Bit 2
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Capacity Scaling Bit 3
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Capacity Scaling Bit 3

101/101

101/110

010/100

011/011

100/100

001/001

101/101

010/011

111/111

110/110100

s

a

b

c

x

y

z

t
101/111

After ≤ m augmentations



44

Capacity Scaling Final
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Capacity Scaling Min Cut
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Total time for capacity scaling

� log2 U rounds where U is largest capacity

� At most m augmentations per round
� Let ci be the capacities used in the ith round and fi

be the maxflow found in the ith round

� For any edge (u,v), ci+1(u,v) ≤ 2ci(u,v)+1
� i+1st round starts with flow  f = 2 fi

� Let (A,B) be a min cut from the ith round

� νννν(fi)=ci(A,B) so νννν(f)=2ci(A,B)

� νννν(fi+1) ≤ ci+1(A,B) ≤ 2ci(A,B)+m =νννν(f)+m

� O(m) time per augmentation

� Total time O(m2 log U)
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Edmonds-Karp Algorithm

� Use a shortest augmenting path 
(via Breadth First Search in residual graph)

� Time: O(n m2)
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BFS/Shortest Path Lemmas

Distance from s in Gf is never reduced by:

• Deleting an edge
Proof: no new (hence no shorter) path created

• Adding an edge (u,v), provided v is nearer 

than u
Proof: BFS is unchanged, since v visited before 

(u,v) examined

s

v

u

a back edge
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Key Lemma

Let f be a flow, Gf the residual graph, and 
P a shortest augmenting path.  Then no 
vertex is closer to s after augmentation 
along P.

Proof: Augmentation along P only deletes 
forward edges, or adds back edges that 
go to previous vertices along P
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Augmentation vs BFS
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Theorem

The Edmonds-Karp Algorithm performs O(mn) flow 
augmentations

Proof: 

Call (u,v) critical for augmenting path P if it’s closest to 
s having min residual capacity

It will disappear from Gf after augmenting along P

In order for (u,v) to be critical again the (u,v) edge         
must re-appear in Gf but that will only happen   
when the distance to u has increased by 2 (next slide)

It won’t be critical again until farther from s
so each edge critical at most n/2 times
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Critical Edges in Gf

Shortest s-t path P in Gf

vus x tw
cP cP>cP >cP

critical edge df(s,v)=df(s,u)+1 since this is a shortest path

After augmenting along P

>0 >0
vus x tw

For (u,v) to be critical later for some flow f’ it must be in Gf’

so must have augmented along a shortest path containing (v,u)

vus x tw

Then we must have df’(s,u)=df’(s,v)+1 ≥≥≥≥ df(s,v)+1=df(s,u)+2
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Corollary

� Edmonds-Karp runs in O(nm2) time
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Project Selection
a.k.a. The Strip Mining Problem

� Given
� a directed acyclic graph G=(V,E)

representing precedence constraints on 
tasks (a task points to its predecessors)

� a profit value p(v) associated with each 
task v∈∈∈∈V (may be positive or negative)

� Find
� a set A⊆⊆⊆⊆V of tasks that is closed under 

predecessors, i.e. if (u,v)∈E and u∈∈∈∈A then 

v∈∈∈∈A, that maximizes Profit(A)=ΣΣΣΣv∈∈∈∈A p(v)
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Project Selection Graph
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Extended Graph
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Extended Graph G’
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Extended Graph G’

� Want to arrange capacities on edges of G so that for 
minimum s-t-cut (S,T) in G’, the set A=S-{s}
� satisfies precedence constraints 

� has maximum possible profit in G

� Cut capacity with S={s} is just C=ΣΣΣΣv: p(v)≥≥≥≥0 p(v)
� Profit(A) ≤ C for any set A

� To satisfy precedence constraints don’t want any 
original edges of G going forward across the 
minimum cut
� That would correspond to a task in A=S-{s} that had a 

predecessor not in A=S-{s}

� Set capacity of each of the edges of G to C+1
� The minimum cut has size at most C
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Extended Graph G’
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Extended Graph G’
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Project Selection

� Claim Any s-t-cut (S,T) in G’ such that    
A=S-{s} satisfies precedence constraints has 
capacity                                                   

c(S,T)=C - Σv∈∈∈∈A p(v) = C - Profit(A)

� Corollary A minimum cut (S,T) in G’ yields 
an optimal solution A=S-{s} to the profit 
selection problem

� Algorithm Compute maximum flow f in G’, 
find the set S of nodes reachable from s in G’f
and return S-{s}
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Proof of Claim

� A=S-{s} satisfies precedence constraints 
� No edge of G crosses forward out of A since those 

edges have capacity C+1

� Only forward edges cut are of the form (v,t) for 
v∈∈∈∈A or (s,v) for v∉∉∉∉A

� The (v,t) edges for v∈∈∈∈A contribute                

Σv∈∈∈∈A:p(v)<<<<0 -p(v) = - Σv∈∈∈∈A:p(v)<<<<0 p(v) 

� The (s,v) edges for v∉∉∉∉A contribute                   

ΣΣΣΣv∉∉∉∉A: p(v)≥≥≥≥0 p(v)=C-ΣΣΣΣv∈∈∈∈A: p(v)≥≥≥≥0 p(v)

� Therefore the total capacity of the cut is          

c(S,T) = C - Σv∈∈∈∈A p(v) =C-Profit(A)


