CSE 421: Introduction to Algorithms

Dynamic Programming

Paul Beame
Dynamic Programming

- Give a solution of a problem using smaller sub-problems where the parameters of all the possible sub-problems are determined in advance

- Useful when the same sub-problems show up again and again in the solution
A simple case: Computing Fibonacci Numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

- Recursive algorithm:
 - $Fibo(n)$
 - if $n = 0$ then return(0)
 - else if $n = 1$ then return(1)
 - else return($Fibo(n-1) + Fibo(n-2)$)
Call tree - start
Full call tree

![Diagram of a full call tree with nodes labeled F(1), F(2), F(3), F(4), F(5), F(6), and binary values 0 and 1 at the leaf nodes. The tree structure shows recursive calls and branching patterns.]
Memoization (Caching)

- Remember all values from previous recursive calls

- Before recursive call, test to see if value has already been computed

Dynamic Programming
- Convert memoized algorithm from a recursive one to an iterative one
Fibonacci
Dynamic Programming Version

- FiboDP(n):

 F[0] ← 0
 F[1] ← 1
 for i = 2 to n do
 F[i] ← F[i-1] + F[i-2]
 endfor
 return(F[n])
Fibonacci: Space-Saving Dynamic Programming

FiboDP(n):
prev ← 0
curr ← 1
for i=2 to n do
 temp ← curr
curr ← curr + prev
 prev ← temp
endfor
return(curr)
Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
- principle of optimality
 - “Optimal solutions to the sub-problems suffice for optimal solution to the whole problem”
Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm

- Show that the number of different values of parameters in the recursive calls is “small”
 - e.g., bounded by a low-degree polynomial
 - Can use memoization

- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.
Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
 - w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used $w_i = f_i - s_i$
- **Goal:** Find compatible subset S of requests with maximum total weight
Greedy Algorithms for Weighted Interval Interval Scheduling?

- No criterion seems to work
 - Earliest start time s_i
 - Doesn’t work
 - Shortest request time $f_i - s_i$
 - Doesn’t work
 - Fewest conflicts
 - Doesn’t work
 - Earliest finish time f_i
 - Doesn’t work
 - Largest weight w_i
 - Doesn’t work
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time \(f_i \) so \(f_1 \leq f_2 \leq \ldots \leq f_n \)
- Say request \(i \) comes before request \(j \) if \(i < j \)
- For any request \(j \) let \(p(j) \) be
 - the largest-numbered request before \(j \) that is compatible with \(j \)
 - or 0 if no such request exists
- Therefore \(\{1, \ldots, p(j)\} \) is precisely the set of requests before \(j \) that are compatible with \(j \)
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Two cases depending on whether an optimal solution O includes request n
 - If it does include request n then all other requests in O must be contained in $\{1,\ldots,p(n)\}$
 - Not only that!
 - Any set of requests in $\{1,\ldots,p(n)\}$ will be compatible with request n
 - So in this case the optimal solution O must contain an optimal solution for $\{1,\ldots,p(n)\}$
 - “Principle of Optimality”
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Two cases depending on whether an optimal solution O includes request n
 - If it does not include request n then all requests in O must be contained in $\{1,\ldots, n-1\}$
 - Not only that!
 - The optimal solution O must contain an optimal solution for $\{1,\ldots, n-1\}$
 - “Principle of Optimality”
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- All subproblems involve requests \{1, \ldots, i\} for some \(i\)

- For \(i=1, \ldots, n\) let \(\text{OPT}(i)\) be the weight of the optimal solution to the problem \(\{1, \ldots, i\}\)

- The two cases give
 \[
 \text{OPT}(n) = \max\{w_n + \text{OPT}(p(n)), \text{OPT}(n-1)\}
 \]

- Also
 \(n \in O\) iff \(w_n + \text{OPT}(p(n)) > \text{OPT}(n-1)\)
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Sort requests and compute array \(p[i] \) for each \(i=1,\ldots,n \)

\[
\text{ComputeOpt}(n) \\
\quad \text{if } n=0 \text{ then return}(0) \\
\quad \text{else} \\
\quad \quad \text{ } u \leftarrow \text{ComputeOpt}(p[n]) \\
\quad \quad \text{ } v \leftarrow \text{ComputeOpt}(n-1) \\
\quad \quad \text{if } w_n + u > v \text{ then return}(w_n + u) \\
\quad \quad \quad \text{else return}(v) \\
\quad \text{endif}
\]
Towards Dynamic Programming: Step 2 – Small # of parameters

- ComputeOpt(n) can take exponential time in the worst case
 - 2^n calls if $p(i) = i-1$ for every i

- There are only n possible parameters to ComputeOpt

- Store these answers in an array $OPT[n]$ and only recompute when necessary
 - Memoization

- Initialize $OPT[i] = 0$ for $i = 1, \ldots, n$
Dynamic Programming: Step 2 – Memoization

ComputeOpt\((n) \)

\[
\text{if } n=0 \text{ then return(0)}
\]

\text{else}

\[
u \leftarrow \text{MComputeOpt}(p[n])
\]

\[
v \leftarrow \text{MComputeOpt}(n-1)
\]

\text{if } w_n+u > v \text{ then}

\[
\text{return}(w_n+u)
\]

\text{else return}(v)

\text{endif}

MComputeOpt\((n) \)

\[
\text{if } \text{OPT}[n]=0 \text{ then}
\]

\[
v \leftarrow \text{ComputeOpt}(n)
\]

\[
\text{OPT}[n] \leftarrow v
\]

\text{return}(v)

\text{else}

\[
\text{return}(\text{OPT}[n])
\]

\text{endif}
Dynamic Programming Step 3: Iterative Solution

- The recursive calls for parameter \(n \) have parameter values \(i \) that are \(< n \)

IterativeComputeOpt(n)
array OPT[0..n]
OPT[0]← 0
for i=1 to n
 if \(w_i + OPT[p[i]] > OPT[i-1] \) then
 OPT[i] ← \(w_i + OPT[p[i]] \)
 else
 OPT[i] ← OPT[i-1]
 endif
endfor
Producing the Solution

IterativeComputeOptSolution(n)
array OPT[0..n], Used[1..n]
OPT[0]←0
for i=1 to n
 if \(w_i + OPT[p[i]] > OPT[i-1] \) then
 OPT[i] ← \(w_i + OPT[p[i]] \)
 Used[i]←1
 else
 OPT[i] ← OPT[i-1]
 Used[i] ← 0
 endif
endfor

i←n
S←∅
while i> 0 do
 if Used[i]=1 then
 S← \(S \cup \{i\} \)
 i←p[i]
 else
 i←i-1
 endif
endwhile
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>p[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPT[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$p[i]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>OPT[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$p[i]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>OPT[i]</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Used[i]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>$p[i]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>OPT[i]</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Used[i]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$S=\{9,7,2\}$
Segmented Least Squares

Least Squares

Given a set \(P \) of \(n \) points in the plane \(p_1=(x_1,y_1),\ldots,p_n=(x_n,y_n) \) with \(x_1<\ldots<x_n \)
determine a line \(L \) given by \(y=ax+b \) that optimizes the total ‘squared error’

\[
\text{Error}(L,P) = \sum_i (y_i-ax_i-b)^2
\]

A classic problem in statistics

Optimal solution is known (see text)

Call this line(\(P \)) and its error error(\(P \))
Least Squares
Segmented Least Squares

- What if data seems to follow a piece-wise linear model?
Segmented Least Squares
Segmented Least Squares
What if data seems to follow a piece-wise linear model?

Number of pieces to choose is not obvious

If we chose \(n-1 \) pieces we could fit with 0 error

- Not fair

Add a penalty of \(C \) times the number of pieces to the error to get a total penalty

How do we compute a solution with the smallest possible total penalty?
Segmented Least Squares

Recursive idea

- If we knew the point p_j where the last line segment began then we could solve the problem optimally for points p_1, \ldots, p_j and combine that with the last segment to get a global optimal solution.

- Let $\text{OPT}(i)$ be the optimal penalty for points $\{p_1, \ldots, p_i\}$

- Total penalty for this solution would be
 \[
 \text{Error}(\{p_j, \ldots, p_n\}) + C + \text{OPT}(j-1)
 \]
Segmented Least Squares
Segmented Least Squares

- Recursive idea
 - We don’t know which point is \(p_j \)
 - But we do know that \(1 \leq j \leq n \)
 - The optimal choice will simply be the best among these possibilities
- Therefore

\[
\text{OPT}(n) = \min_{1 \leq j \leq n} \left\{ \text{Error}(\{p_j, \ldots, p_n\}) + C + \text{OPT}(j-1) \right\}
\]
Dynamic Programming Solution

SegmentedLeastSquares(n)
array OPT[0..n]
array Begin[1..n]
OPT[0]←0
for i=1 to n
 OPT[i]←Error\{\{p_1,\ldots,p_i\}\}+C
 Begin[i]←1
 for j=2 to i-1
 e←Error\{\{p_j,\ldots,p_i\}\}+C+OPT[j-1]
 if e < OPT[i] then
 OPT[i] ← e
 Begin[i]←j
 endif
 endfor
endfor
return(OPT[n])

FindSegments
i←n
S←∅
while i > 1 do
 compute Line\{\{p_{Begin[i]},\ldots,p_i\}\}
 output (p_{Begin[i]},p_i), Line
 i←Begin[i]
endwhile
Knapsack (Subset-Sum) Problem

Given:
- integer \(W \) (knapsack size)
- \(n \) object sizes \(x_1, x_2, \ldots, x_n \)

Find:
- Subset \(S \) of \(\{1, \ldots, n\} \) such that
 \[
 \sum_{i \in S} x_i \leq W
 \]
 but
 \[
 \sum_{i \in S} x_i \text{ is as large as possible}
 \]
Recursive Algorithm

- Let $K(n, W)$ denote the problem to solve for W and x_1, x_2, \ldots, x_n
- For $n > 0$,
 - The optimal solution for $K(n, W)$ is the better of the optimal solution for either $K(n-1, W)$ or $x_n + K(n-1, W-x_n)$
- For $n = 0$
 - $K(0, W)$ has a trivial solution of an empty set S with weight 0
Recursive calls

- Recursive calls on list ..., 3, 4, 7
Common Sub-problems

- Only sub-problems are \(K(i, w) \) for
 - \(i = 0, 1, \ldots, n \)
 - \(w = 0, 1, \ldots, W \)

- Dynamic programming solution
 - Table entry for each \(K(i, w) \)
 - \(\text{OPT} \) - value of optimal soln for first \(i \) objects and weight \(w \)
 - \(\text{belong} \) flag - is \(x_i \) a part of this solution?
 - Initialize \(\text{OPT}[0, w] \) for \(w = 0, \ldots, W \)
 - Compute all \(\text{OPT}[i, \ast] \) from \(\text{OPT}[i-1, \ast] \) for \(i > 0 \)
Dynamic Knapsack Algorithm

for \(w=0 \) to \(W \); \(\text{OPT}[0,w] \leftarrow 0 \); end for
for \(i=1 \) to \(n \) do
 for \(w=0 \) to \(W \) do
 \(\text{OPT}[i,w] \leftarrow \text{OPT}[i-1,w] \)
 \(\text{belong}[i,w] \leftarrow 0 \)
 if \(w \geq x_i \) then
 \(\text{val} \leftarrow x_i + \text{OPT}[i-1,w-x_i] \)
 if \(\text{val} > \text{OPT}[i,w] \) then
 \(\text{OPT}[i,w] \leftarrow \text{val} \)
 \(\text{belong}[i,w] \leftarrow 1 \)
 end if
 end for
end for
return(\(\text{OPT}[n,W] \))

Time \(O(nW) \)
Sample execution on 2, 3, 4, 7 with K=15
Saving Space

- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step

- What about determining the set S?
 - Follow the belong flags $O(n)$ time
 - What about space?
Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm

- Show that the number of different values of parameters in the recursive algorithm is "small"
 - e.g., bounded by a low-degree polynomial

- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.
RNA Secondary Structure: Dynamic Programming on Intervals

- RNA: sequence of bases
 - String over alphabet \{A, C, G, U\}

- RNA folds and sticks to itself like a zipper
 - A bonds to U
 - C bonds to G
 - Bends can’t be sharp
 - No twisting or criss-crossing

- How the bonds line up is called the RNA secondary structure
RNA Secondary Structure

ACGAUACUGCAAUUCUCUGUGACGAACCCAGCGAGGUGUGUA
Another view of RNA Secondary Structure

No crossing
RNA Secondary Structure

- **Input:** String $x_1...x_n \in \{A,C,G,U\}^*$
- **Output:** Maximum size set S of pairs (i,j) such that
 - $\{x_i, x_j\} = \{A,U\}$ or $\{x_i, x_j\} = \{C,G\}$
 - The pairs in S form a matching
 - $i < j - 4$ (no sharp bends)
 - No crossing pairs
 - If (i,j) and (k,l) are in S then it is not the case that they cross as in $i < k < j < l$
Recursion Solution

- Try all possible matches for the last base

General form:

\[
\text{OPT}(1..j) = \max(\text{OPT}(1..j-1), 1 + \max_{k=1..j-5} (\text{OPT}(1..k-1) + \text{OPT}(k+1..j-1)))
\]

\[
x_k \text{ matches } x_j
\]

\[\text{OPT}(i..j) = \max(\text{OPT}(i..j-1), 1 + \max_{k=i..j-5} (\text{OPT}(i..k-1) + \text{OPT}(k+1..j-1))))
\]

\[x_k \text{ matches } x_j
\]
RNA Secondary Structure

- 2D Array $\text{OPT}(i,j)$ for $i \leq j$ represents optimal # of matches entirely for segment $i..j$
- For $j-i \leq 4$ set $\text{OPT}(i,j)=0$ (no sharp bends)
- Then compute $\text{OPT}(i,j)$ values when $j-i=5,6,...,n-1$ in turn using recurrence.
- Return $\text{OPT}(1,n)$
- Total of $O(n^3)$ time
- Can also record matches along the way to produce S
 - Similar polynomial-time algorithm for other problems
 - Context-Free Language recognition
 - Optimal matrix products, etc.
 - All use dynamic programming over intervals
Sequence Alignment: Edit Distance

- **Given:**
 - Two strings of characters \(A = a_1 \ a_2 \ldots a_n \) and \(B = b_1 \ b_2 \ldots b_m \)

- **Find:**
 - The minimum number of edit steps needed to transform \(A \) into \(B \) where an edit can be:
 - **insert** a single character
 - **delete** a single character
 - **substitute** one character by another
Sequence Alignment vs Edit Distance

- **Sequence Alignment**
 - Insert corresponds to aligning with a “—” in the first string
 - Cost δ (in our case 1)
 - Delete corresponds to aligning with a “—” in the second string
 - Cost δ (in our case 1)
 - Replacement of an a by a b corresponds to a mismatch
 - Cost α_{ab} (in our case 1 if $a \neq b$ and 0 if $a = b$)

- In Computational Biology this alignment algorithm is attributed to Smith & Waterman
Applications

- "diff" utility – where do two files differ
- Version control & patch distribution – save/send only changes
- Molecular biology
 - Similar sequences often have similar origin and function
 - Similarity often recognizable despite millions or billions of years of evolutionary divergence
Recursive Solution

- **Sub-problems:** Edit distance problems for all prefixes of A and B that don’t include all of both A and B

- Let $D(i,j)$ be the number of edits required to transform $a_1 \ a_2 \ ... \ a_i$ into $b_1 \ b_2 \ ... \ b_j$

- Clearly $D(0,0)=0$
Computing $D(n,m)$

- Imagine how best sequence handles the last characters a_n and b_m
- If best sequence of operations
 - deletes a_n then $D(n,m) = D(n-1,m) + 1$
 - inserts b_m then $D(n,m) = D(n,m-1) + 1$
 - replaces a_n by b_m then
 $$D(n,m) = D(n-1,m-1) + 1$$
 - matches a_n and b_m then
 $$D(n,m) = D(n-1,m-1)$$
Recursive algorithm $D(n,m)$

if $n=0$ then
 return (m)
elseif $m=0$ then
 return(n)
else
 if $a_n=b_m$ then
 replace-cost $\leftarrow 0$
 else
 replace-cost $\leftarrow 1$
 endif
 return$(\min\{ D(n-1, m) + 1, D(n, m-1) +1, D(n-1, m-1) + \text{replace-cost} \})$

\[\text{cost of substitution of } a_n \text{ by } b_m \text{ (if used)} \]
for j = 0 to m; D(0,j) ← j; endfor
for i = 1 to n; D(i,0) ← i; endfor
for i = 1 to n
 for j = 1 to m
 if a_i = b_j then
 replace-cost ← 0
 else
 replace-cost ← 1
 endif
 D(i,j) ← min { D(i-1, j) + 1,
 D(i, j-1) + 1,
 D(i-1, j-1) + replace-cost
 }
 endfor
endfor
Example run with AGACATTG and GAGTTA
Example run with AGACATTTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example run with AGACATTG and GAGTTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Example run with AGACATTG and GAGTTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment

```
A G A C A T T G
_ G A G _ T T A
```
Saving Space

- To compute the distance values we only need the last two rows (or columns)
 - $O(\min(m,n))$ space
- To compute the alignment/sequence of operations
 - seem to need to store all $O(mn)$ pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in $O(\min(m,n))$ space and retain $O(mn)$ time
 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters
 - Researchers want all alignments that are close to optimal
 - Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
 - Ideas are neat, though
Saving space

- Alignment corresponds to a path through the table from lower right to upper left
 - Must pass through the middle column
- Recursively compute the entries for the middle column from the left
 - If we knew the cost of completing each then we could figure out where the path crossed
- Problem
 - There are n possible strings to start from.
- Solution
 - Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings!
 - Can reuse the storage on the left when solving the right hand problem
Shortest paths with negative cost edges (Bellman-Ford)

- Dijsktra’s algorithm failed with negative-cost edges
 - What can we do in this case?
 - Negative-cost cycles could result in shortest paths with length $-\infty$

- Suppose no negative-cost cycles in G
 - Shortest path from s to t has at most $n-1$ edges
 - If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can’t have $-ve$ cost
Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from \(s \) to \(t \) based on the # of edges in the path.
- Let \(\text{Cost}(s, t, i) \) = cost of minimum-length path from \(s \) to \(t \) using up to \(i \) hops.
 - \(\text{Cost}(v, t, 0) = \begin{cases} 0 & \text{if } v = t \\ \infty & \text{otherwise} \end{cases} \)
 - \(\text{Cost}(v, t, i) = \min\{\text{Cost}(v, t, i-1), \min_{(v, w) \in E}(c_{vw} + \text{Cost}(w, t, i-1))\} \)
Bellman-Ford

- Observe that the recursion for \(\text{Cost}(s,t,i) \) doesn’t change \(t \)
 - Only store an entry for each \(v \) and \(i \)
 - Termed \(\text{OPT}(v,i) \) in the text

- Also observe that to compute \(\text{OPT}(*,i) \) we only need \(\text{OPT}(*,i-1) \)
 - Can store a current and previous copy in \(O(n) \) space.
Bellman-Ford

ShortestPath(G,s,t)
 for all $v \in V$
 $OPT[v] \leftarrow \infty$
 $OPT[t] \leftarrow 0$
 for $i = 1$ to $n-1$ do
 for all $v \in V$ do
 $OPT'[v] \leftarrow \min_{(v,w) \in E} (c_{vw} + OPT[w])$
 for all $v \in V$ do
 $OPT[v] \leftarrow \min(OPT'[v], OPT[v])$
 return $OPT[s]$

$O(mn)$ time
Negative cycles

Claim: There is a negative-cost cycle that can reach t iff for some vertex $v \in V$, $\text{Cost}(v,t,n) < \text{Cost}(v,t,n-1)$

Proof:
- We already know that if there aren’t any then we only need paths of length up to $n-1$
- For the other direction
 - The recurrence computes $\text{Cost}(v,t,i)$ correctly for any number of hops i
 - The recurrence reaches a fixed point if for every $v \in V$, $\text{Cost}(v,t,i) = \text{Cost}(v,t,i-1)$
 - A negative-cost cycle means that eventually some $\text{Cost}(v,t,i)$ gets smaller than any given bound
 - Can’t have a –ve cost cycle if for every $v \in V$, $\text{Cost}(v,t,n) = \text{Cost}(v,t,n-1)$
Last details

- Can run algorithm and stop early if the OPT and OPT’ arrays are ever equal
 - Even better, one can update only neighbors v of vertices w with OPT’[w]≠OPT[w]
- Can store a successor pointer when we compute OPT
 - Homework assignment
- By running for step n we can find some vertex v on a negative cycle and use the successor pointers to find the cycle
Bellman-Ford
Bellman-Ford
Bellman-Ford
Bellman-Ford
Bellman-Ford
Bellman-Ford

Graph with nodes 0, 1, 2, 3, and 4. Edges and weights are as follows:
- Edge from 0 to 1 with weight -2
- Edge from 1 to 0 with weight 6
- Edge from 1 to 2 with weight 2
- Edge from 2 to 0 with weight 7
- Edge from 2 to 1 with weight -4
- Edge from 2 to 4 with weight 5
- Edge from 3 to 2 with weight -3
- Edge from 4 to 2 with weight 9
- Edge from 4 to 3 with weight 7
- Edge from 3 to 4 with weight 8

The graph illustrates the Bellman-Ford algorithm for finding the shortest paths in a weighted graph, allowing for negative weight edges.
Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
- Update distances in reverse order of topological sort
- Only one pass through vertices required
- $O(n+m)$ time