CSE 421: Introduction to

| Algorithms

Divide and Conquer

Paul Beame

i Algorithm Design Techniques

= Divide & Conquer

= Reduce problem to one or more sub-problems of
the same type

= Typically, each sub-problem is at most a
constant fraction of the size of the original
problem

= €.9. Mergesort, Binary Search, Strassen’s
Algorithm, Quicksort (kind of)

i Fast exponentiation

= Power(a,n)
= Input: integer n and number a
= Output: a"

= Obvious algorithm
= h-1 multiplications

= Observation:
= if nis even, n=2m, then a"=a™Me.a™

i Divide & Conquer Algorithm

= Power(a,n)
if n=0 then return(1)
else if n=1 then return(a)
else

x «—Power(a, n/2)
If n is even then
return(Xex)
else
return(@eXex)

i Analysis

= Worst-case recurrence
= T(n)=T(Ln/2))+2 for n>1
= 1(1)=0

= [Ime

« T(N)=T(n/2))+2 < T(n/4))+2+2 < ...
<T(1)+2+...+42 = 2 logyn

LN
log,n copies

= More precise analysis:

= T(n)= [log,n| + # of 1’s in n’s binary
representation

i A Practical Application- RSA

= Instead of a" want a” mod N
= a*I'mod N = ((@' mod N)«(al mod N)) mod N
= same algorithm applies with each xsy replaced by
= ((x mod N)«(y mod N)) mod N

= In RSA cryptosystem (widely used for security)

= need a”" mod N where a, n, N each typically have
1024 bits

= Power: at most 2048 multiplies of 1024 bit
numbers

= relatively easy for modern machines
= Naive algorithm: 21924 multiplies

Binary search for roots
(bisection method)

=

s Given:

= continuous function f and two points a<b with
f(a) <0 and f(b) >0

s Find:
= approximation to c¢ s.t. f(c)=0 and a<c<b

i Bisection method

Bisection(a,b, €)
if (b-a) < e then
return(a)
else
C «—(a+b)/2
if f(c) <0 then
return(Bisection(c,b,¢))
else
return(Bisection(a,c,¢))

i Time Analysis

= At each step we halved the size of the
interval

= It started at size b-a
= It ended at size ¢

= # of calls to fis log,((b-a)/¢)

i Old favorites

= Binary search
= One subproblem of half size plus one comparison
= Recurrence T(n) = T(n/2)+1 forn > 2
T1)=0
So T(n) is [log, n |+1
= Mergesort

= Two subproblems of half size plus merge cost of
n-1 comparisons

= Recurrence T(n) < 2T(n/2)+n-1 for n > 2
T(1) =0

Roughly n comparisons at each of log, n levels of
recursion

So T(n) is roughly 2n log, n

10

4

Euclidean Closest Pair

Given a set P of n points p4,...,p,, with real-valued
coordinates

Find the pair of points p;,p:e P such that the
Euclidean distance d(pi,pjﬂ IS minimized

®(n?) possible pairs

In one dimension: easy O(n log n) algorithm
= Sort the points
= Compare consecutive elements in the sorted list

What about points in the plane?

11

i Closest Pair in the Plane

No single direction along which one
can sort points to guarantee success!

12

Closest Pair In the Plane:
Divide and Conquer

4

Sort the points by their x coordinates

Split the points into two sets of n/2 points L and R by
X coordinate

Recursively compute
= closest pair of points in L, (p,,q,)
= closest pair of points in R, (pgr,qgr)

Let 6=min{d(p,q,),d(Pgr,dr)} and let (p,q) be the pair
of points that has distance 6

But this may not be enough

= Closest pair of points may involve one point from L and the
other from R!

13

i A clever geometric idea

L

R

Any pair of points peL and

ge R with d(p,q)<d must
lie in band

14

A clever geometric idea

R
L
Any pair of points peL and
ge R with d(p,q)<d must
lie in band
No two points can be in
0/2 { / ' the same green box
N '
o o

15

™

A clever geometric idea

L

R

Any pair of points peL and
ge R with d(p,q)<d must
lie in band

No two points can be in
the same green box

Only need to check pairs
of points up to 2 rows
apart -

At most a constant #
of other points!

16

|

Closest Pair Recombining

Sort points by y coordinate ahead of time

On recombination only compare each point in §-band
of LUR to the 11 points in §-band of LUR above it in
the y sorted order

= If any of those distances is better than o replace (p,q)
by the best of those pairs

O(n log n) for x and y sorting at start
Two recursive calls on problems on half size

O(n) recombination

Total O(n log n)

17

Sometimes two sub-problems aren’t

i enough

= More general divide and conquer

= You've broken the problem into a different
sub-problems

= Each has size at most n/b

= [he cost of the break-up and recombining
the sub-problem solutions is O(nk)

= Recurrence
» T(nN)< a-T(n/b)+c-nkK

18

Master Divide and Conquer

i Recurrence

= If T(n)< a-T(n/b)+c-nk for n>b then
« if a>bkthen T(n)is ©(n'°%?*)

= if a<bkthen T(n)is ©(nk)

= if a=b¥ then T(n) is ®(nk log n)

= Works even if it is | n/b | instead of n/b.

19

ﬁ Proving Master recurrence

Problem size T(n)=a-T(n/b)+c-nk # probs

n O
T ¥ 1
n/b a
v v
n/b?2 e o oo o ‘o 32
b O K o o o
\-/0,‘ M
1 e o o e o o qd

20

ﬁ Proving Master recurrence

Problem size T(n)=a-T(n/b)+c-nk # probs

n O

I

nlb < .o: ° ”.o’ 3

n/b2 T e o o0 o o 32
© :_0“ :_o“

b o o o o
\-/0,‘ M

1 ve o e e o o qd

T(1)=c

21

ﬁ Proving Master recurrence

Problem size T(n)=a-T(n/b)+c-nk # probs cost

B RN oo
nlb S o o o a c-a-nk/bk
n/b? _I-cl_s e © o0 o o 22 c-a2-nk/b2k
"..‘ ”'.‘ =c-n¥(a/bk)?
b o = e o o
S N %, C: nk(a/bk)d
1 e e o o o o d

T(1)=c =¢-a®
22

i Geometric Series

= S =t+ tr +tr2+ ... + tr™

= 'S = tr +tr2+ ...+ tr™1 4 trn
= (r-1)S=tr" -t

= SO S=t (r"-1)/(r-1) if r=1.

= Simple rule

« Ifr#1then S is a constant times largest
term in series

23

i Total Cost

= Geometric series
= ratio a/bk
» d+1=log,n +1 terms
= first term cnk, lastterm cad

= If a/bk=1
= all terms are equal T(n) is ®(nk log n)
= |f a/bk<1
= first term is largest T(n) is ®(nk)
= |f a/bk>1
= lasttermis largest T(n) is ®(a%)=0(a
(To see this take log, of both sides)

log,.n log,.a
9p (9o)

) =0(n

24

Multiplying Matrices

ay dp 4z 4y b, b, b; b,
Uy Gy Uy oy | by, by, by Dby,
A3 Az A3z Ay by, by, by by

| Ay Ay Ay Ay | _b41 b, by by |

o

&by + by, +apy +ay by, |
&by + by, +ayby +ayby,
ay by, +agby, +asby +ayby,
ay by +aph,+aghy, + a44b44_

I a b, +aby, +aby+aby, ab,+ash,+aby,+aby,
&by +ayhy, +ayhy +ayby ay b, +anhs, +ayby, +ayby,
ay by +aphy, +agby +ayb,, ayb, +ayhy, +ayhy, +ab,,

ayb +aghy, +aghy +auby aby,+aghy, +a,by, +a,b,,

o

(@)

(@)

= N3 multiplications, n3-n? additions

25

i Multiplying Matrices

fori=1to n
for j=1to n
Cli,j]<0
for k=1 ton
Cli,j]l=Cli.j]+Ali,k]-B[k,]]
endfor
endfor
endfor

26

Multiplying Matrices

ay dp| 4z 4y b, b, |b; by
Uy Gy | o3 Gog |, by, by, | by Dy,
A3 Az A3z Ay by, by, by by
Ay Ay Ay Ay | _b41 b, by by |

o

&by +abyy +apy +ay by, |
by +ayDsy + a0 by +ay by,
ay by, +agbyy +asby +ay by,
a, b, +auh,+aby,+ a44b44_

o

b, +a12b21‘ : a by +a,,b,, ‘ b, +a12b22‘ : a by, +a,by
B a, b, +ay, [Fa D +a,by, |4y by +aybyitayhy, +ayby,
ay by Faphy, +agby +ayd,, ayb, +ayhy, +ayhy, +ab,,
ayby +aphy, +aghy tauby, ab,+aghy, +aghy, +aby,

(0]

(0]

27

Multiplying Matrices

ay Ay |4z 4y b, b, b; b,
Uy Gy |Gy G|, by, by, by Dby,
A3 Az A3z Ay by, by, | by by

| Ay Ay Ay Ay | b, by, |bys by |

o

&by +abyy +apy +ay by, |
by +ayDsy + a0 by +ay by,
ay by, +agbyy +asby +ay by,
a, b, +auh,+aby,+ a44b44_

o

_aub11+a12b21 a by +ayhy, | @ by+asb, a13b32+a14b42J
ay Dy, +ayb,, a23b31+ag4b41 ay by, +ayby, a23b32+ag4b42

ay\by by taghy tayby, ayby, +anhy, +agby tayby,
ayb+aph, taghy +aub,, anb,+aghy, +aby, +ab,

(0]

(0]

28

: Multiplying Matrices

a, ap | ay ay | by by | by, by,
A"& A'l é B 1 blB 13
ay; 2 dx 24 || P2t P2 § P23 TP
ds A Az f A3z sy B 178>
a41 azﬁ 22, _b41 25’42 by 2344 |

o

b+ 2b24+al3b34 ayby,
a,, 1411"12;@44'“2;524&@24 b,
a, b, +a,b,, +aby +a b,
IR anBaop.,

_al1b11+a12b21+a13 + b41 ng‘kalzbzz'l'awbﬂ"'am 42
a, by, +ayh, +ayh, Mam A1 022322"'“231732"'“24 42

o

(@)

aglb11+032b21+033;A+ 03 Lt 2b22+033b32+a34 42
_a41b11+a42b21+a4 31 44 41 a41 122‘a42%22+a43b32+a44b42

(@)

29

: * Simple Divide and Conquer

A | Agz By | By
Ay | A, By, | Bz

A By tA By | ApBiatA By,]

Az1B111A35B5 | A,B,,*A,,B,,

= T(n)=8T(n/2)+4(n/2)?=8T(n/2)+n?

= 852250 T(n) is
@(nlogba) _ @(nlogz8) — @(n3)

30

Strassen’s Divide and Conquer

i Algorithm

= Strassen’s algorithm

= Multiply 2x2 matrices using 7 instead of 8
multiplications (and lots more than 4 additions)

= T(n)=7 T(n/2)+cn>
- 7>22 s0 T(n)is ®(n) which is O(n281--)

= Fastest algorithms theoretically use O(n?373) time

= not practical but Strassen’s is practical
provided calculations are exact and we stop
recursion when matrix has size somewhere
between 10 and 100

31

i The algorithm

Ps%(A.” - A12)B11; P4F(A22 - A21)B22

Ps<(Ag - Aqy5)(Byg - Byy)
Pg<—(Aq1- Az)(B12- Byq)
P (A21 12)(B11+B2)
C1<P+P;; C,,<Py+P;+P¢ - P,

32

Another Divide &Conquer Example:
i Multiplying Faster

= If you analyze our usual grade school
algorithm for multiplying numbers
= O(n?) time
= On real machines each “digit” is, e.g., 32 bits long

but still get ®(n?) running time with this algorithm
when run on n-bit multiplication

= We can do better!

= We'll describe the basic ideas by multiplying
polynomials rather than integers

= Advantage is we don't get confused by worrying
about carries at first

33

i Notes on Polynomials

= These are just formal sequences of
coefficients

= when we show something multiplied by x¥ it just
means shifted k places to the left — basically no

work
| 4x2 + 2x + 2
Usual polynomial X2 - 3X + 1
multiplication 4x2 + 2x + 2

-12x3 - 6x2 - 6X
4x4 + 2x3 +2x2
4x4 -10x3 +0x2 -4x + 2

34

i Polynomial Multiplication

= Given:
= Degree n-1 polynomials P and Q
=P=a;, +a;x+a,x?+... +a, X" +a, x"
= Q=by+b;x+b, X2+ ... + b, x"2 + b, ,x
= Compute:
= Degree 2n-2 Polynomial P Q
= PQ=ayb, + (a,b,+a,b,) x + (agb,+a,b, +a,b,) x2
+...+ (a, b, +a, b, o) x2"3 +a .b_ . x2n-2

= Obvious Algorithm:

= Compute all a,b; and collect terms
= O (n?) time

35

i Naive Divide and Conquer

= Assume n=2k
» P=(a,+a, X+a,x?+..+a.,x"?+a,, xk1) +
(@, + a1 X + o+ A, oXK2 4 g xk1) xk
= Py + P, x¥ where P, and P, are degree k-1
polynomials
= Similarly Q = Q, + Q, x*

= PQ = (Py+Px¥)(Q,+Q,x¥)
= P,Q, + (P;Q,+P,Q,)x¥ + P,Q,x3k

= 4 sub-problems of size k=n/2 plus linear combining
= T(n)=4-T(n/2)+cn Solution T(n) = B(n?)

36

i Karatsuba’s Algorithm

= A better way to compute the terms
= Compute
= A« P,Q,
= B« P,Q,
= C « (Py+P4)(Qy+Q,) = P,Qy+P,Q,+P,Q,+P,Q;
= Then
- P,Q,+P,Q, = C-A-B
= So PQ=A+(C-A-B)xk+Bx2«
= 3 sub-problems of size n/2 plus O(n) work
=« T(N) =3 T(N/2) + cn
= T(n) = 0O(n% where o = 10g,3 = 1.59...

37

Karatsuba:

A
Details I Mig
B
R
PolyMul(P, Q): 2n-1 n n/2
/I P, Q are length n =2k vectors, with P[i], Q[i] being
// the coefficient of X! in polynomials P, Q respectively.
// Let PO be elements 0..k-1 of P; P1 be elements k..n-1
// Qzero, Qone : similar
If n=1 then Return(P[0]*Q[0]) else
A < PolyMul(P0, Q0); //resultis a (2k-1)-vector
B < PolyMul(P1, Q1); // ditto
Psum < PO + P1; // add corresponding elements
Qsum < Q0 + Q1; // ditto
C < polyMul(Psum, Qsum); // another (2k-1)-vector
Mid < C - A - B; // subtract correspond elements

R < A + Shift(Mid, n/2) +Shift(B,n) // a (2n-1)-vector
Return(R);

38

Multiplication

= Polynomials
= Naive: ©(n?)
» Karatsuba: ©(n'-°9%-)
= Best known: ®(n log n)
« "Fast Fourier Transform®
« FFT widely used for signal processing

= Integers

= Similar, but some ugly details re: carries, etc. due to
Schonhage-Strassen in 1971 gives ®(n log n loglog n)

= Improvement in 2007 due to Furer gives @(n log n 209")

= Used in practice in symbolic manipulation systems like
Maple

39

Hints towards FFT:

i Interpolation

Given set of values at 5 points

40

Hints towards FFT:

ﬁ Interpolation

Given set of values at 5 points
Can find unique degree 4 polynomial
going through these points

41

Multiplying Polynomials by
i Evaluation & Interpolation

= Any degree n-1 polynomial R(y) is determined
by R(yy), ... R(y,.1) for any n distinct y,,...,V,,

= To compute PQ (assume degree at most n/2-1)
» Evaluate P(y,),..., P(V,,.1)
= Evaluate Q(y,),...,Q(Y,.1)
= Multiply values P(y;,)Q(y;) fori=0,...,n-1
= Interpolate to recover PQ

42

i Interpolation

= Given values of degree n-1 polynomial R at n
distinct points y,...,¥,.1

= R(Yo),----R(Yn1)

= Compute coefficients c,,...,c,_; such that
= R(X)=Cy+C X+CoX%+...+C X"

= System of linear equations in c,,...,c,
Co +C1Yo+Co¥o*+..-+Cn1 Yo" ' =R(Yo) own

Co +C1Y1+CoY1%+...+CrqY1"=R(Y;)

.- unknown
c0 +C1 yn-1 +c2yn-1 2+' '+Cn-1 yn-1 1= I:"(yn-1)

43

Interpolation:

m Matrlx form of the linear system
] y n-1
. y n-1

1yo Yo’
1y, ¥4

= Fact: Determinant of the matrix is L I,_; (y;-y))

\1 yn-1 yn-1 2

n-1
- yn-1

N

y

l

i n equations in n unknowns

RV, 1)

which is not 0 since points are distinct

= System has a unique solution c,...

vcn-1

J

44

Hints towards FFT:
i Evaluation & Interpolation

ordinary polynomial

multiplication ®(n?)

R:
c, < Y. ab, ©0:15-++Cn-1
i+j=k
evaluation " iInterpolation
at Yo,- o', from yg,....,¥n.1
O(?) O(?)
. point-wise
P(¥0),Q(Yo) multiplication R(yo)eP(YO)'Q(yo)

P(y,),Q(y4) of numbers O(n) R(y)<P(y,)-Q(y,)

P (Yo QYor) | "

R(Yp1)<P(¥s1)- QY1)

45

Karatsuba’s algorithm and evaluation
i and interpolation

= Strassen gave a way of doing 2x2 matrix multiplies
with fewer multiplications

= Karatsuba’s algorithm can be thought of as a way of
multiplying degree 1 polynomials (which have 2
coefficients) using fewer multiplications
« PQ=(P,+P,2)(Q,+Q,2)
= P,Q, + (P,Q,+P,Q,)z + P,Q,2z2
»« Evaluate at 0,1,-1 (Could also use other points)
« A =P(0)Q(0)= P,Q,
« C=P(1)Q(1)=(P 0+P)(Qy+Qy)
« D=P(-1)Q(-1)=(Py -P1)(Q,-Qy)
= Interpolating, Karatsuba’s Mid=(C-D)/2 and B=(C+D)/2-A

46

i Evaluation at Special Points

= Evaluation of polynomial at 1 point
takes O(n) time
= S0 2n points (naively) takes O(n?)—no
savings
= But the algorithm works no matter what the
points are...
= S0...choose points that are related to
each other so that evaluation problems
can share subproblems

47

The key idea:
Evaluate at related points

s P(X) = ag+a,x+a,x?+a;x3+a,x4+...+a,, X"
= @p +A,X2 +a,X* +...+ A, X"
+ @, X+a5X3 +aX> +...+a,_{ X"
= Peven(xz) + X Podd(xz)

s P(-X)=ay-a;X+a,X2 -a;x3+a,x*... -a, X"
= @ +A,X2 +a,X* +...+ A, X"?
- (ayx+agx3 +agx> +...+a, X"
= Peyen(X?) = X Pggq(X?)

where P,,.,(z) = a5 +a,z +a,2° +...+ a,,_,z"?"
even 0 2 4 n-2

even

and Pgy4(z) =a;+a;z+asz?+...+a,,12"%1

48

The key idea:
Evaluate at related points

|

= So... if we have half the points as negatives of the
other half

= 1.8, Y= Yo Yni2+1= “Y15-->¥n1= "Ynj2-1
then we can reduce the size n problem of evaluating
degree n-1 polynomial P at n points to evaluating 2
degree n/2 - 1 polynomials P, and P44 at n/2
points yy2,...V,,».4> and recombine answers with O(1)
extra work per point

= But to use this idea recursively we need half of
Yo?,---Yno.12 10 be negatives of the other half

= If Y42 = -Yo? say, then (y,,/Yo)?*= -1
= Motivates use of complex numbers as evaluation
points

49

= -1

i Complex Numbers

1. add angles
2. multiply lengths
(all length 1 here)

e+fi = (a+bi)(c+di)

.......... .l a+bi =cos 0 +isin 6 = e
. c+di =cos @ +isin ¢ = e
e2ni = 1 e+fi =cos (B+0) +isin (8+¢) = e*®

To multiply complex numbers:

50

ﬁ Primitive n'" root of 1 w=wm,=e/2%"

Let o = @, = 2%/
.. 0 = COS (ZTC/n) +/ sin (27'5/”)

L 9=1=(8
camsa@urns

5 . P g
') Q . I2 = -1
G)6= -l eZTl: i — 1

51

1

Facts about wm=e4™ /" for even n

W= e2mM/N for j=+/—1

o"=1

(Dn/2 — _1

w"2+k = - @K for all values of k
W2 = e2®/m where m=n/2

®* = cos(2kn/n)+i sin(2kw/n) so can compute with
powers of ®

X is a root of x"-1= (x-1)(X™14+x"2+...+1) =0
but for k#0, %A1 so KM D4@k2) 4, +1=0

52

-~

The key idea for n even

= P(0) = ag+a,0+a,0%+a;03+a,0%+...+a, o'
= @ +a,0° +a,0* +...+ a,,_,O"2
+ a,0+a;0° +a;®° +...+a,_ ;O
= Peyen(®?) + ® Pygq(®?)

= P(-w)=a,-a,0+a,0? -a;03+a,0%... -a, 0"
= @y +a,0% +a,0%* +...+ a,_,O"2
- (a,0+a;0° +a;w° +...+a,_ ;")
= Peven(mz) -0 Podd(ﬂ)z)
where Py en(X) = @g +@5X +@,X2 +...+ @, X2

and P_y4(X) = a,+agX +agx? +...+a, X"

53

The recursive idea for

i n a power of 2

= Goal:
= Evaluate P at 1,m,0?,®?3,...,0""
= Now
= P..,and P44 have degree n/2-1 where
. P((Dk)=Peven(m2k)+wkpodd(m2k)
. P('(Dk)=Peven((DZk)'(DkPodd((DZk)

= Recursive Algorithm @? is e2/m where m=n/2
= Evaluate P, at 1,0%,0?,...,0"2 «”| so problems are of same
even At h e Al type but smaller size

« Evaluate P_ 4 at 1,0%,0%,...,0"2

= Combine to compute P at 1,0,&?,...,0"%

= Combine to compute P at -1,-0,-0?,...,-@"?
(|e at (Dn/2 (Dn/2+1 (Dn/2+2 (Dn-1)

54

i Analysis and more

= Run-time
s T(N)=2-T(n/2)+cn so T(n)=0(n log n)
= S0 much for evaluation ... what about
interpolation?
= Given
= r1,=R(1), r,=R(w), r,=R(®?),..., r,.;=R(®™1)
= Compute
= Cg, Cq,...,C1.q S.1. R(X)=Co+C{X+...+C,,_{ X

55

Interpolation = Evaluation:
i strange but true

= Non-obvious fact:

= |f we define a new polynomial
S(X) = rg+ X + X2 +...+ 1 X" whererg, ry, ..., 1
are the evaluations of R at1, o, ... , ®™
« Then ¢,=S(w*)/n for k=0,...,n-1

= Relies on the fact the interpolation (inverse) matrix
has jk entry wk/n instead of wk

= SO...

= evaluate S at 1,0, ®?2,.... (™1 then divide each
answer by n to get the c,,...,c, 4

= @ behaves just like ® did so the same O(n log n)
evaluation algorithm applies !

n-1

56

i Divide and Conquer Summary

= Powerful technique, when applicable

= Divide large problem into a few smaller
problems of the same type

= Choosing sub-problems of roughly equal size
Is usually critical

= Examples:

= Merge sort, quicksort (sort of), polynomial
multiplication, FFT, Strassen's matrix multiplication
algorithm, powering, binary search, root finding by
bisection, ...

57

Why this is called the discrete Fourier

i transform

= Real Fourier series

= Given a real valued function f defined on [0,27]
the Fourier series for f is given by
f(x)=ay,+a; cos(x) + a, cos(2x) +...+ a,, COS(MXx) +...
where

127t
_— | f(x) cos(mx) dx
am_m!() (mx)

= is the component of f of frequency m

= In signal processing and data compression one
ignores all but the components with large a,, and

there aren’t many since
58

Why this is called the discrete Fourier

| i transform

= Complex Fourier series
= Given a function f defined on [0,27]
the complex Fourier series for f is given by
f(z)=by+b, €'2 + b, €22 +...+ b, e™Z +...
where

1 2T _
- — | f(z)e™?* dz
b an (2)

IS the component of f of frequency m

= |f we discretize this integral using values at n | 2n/n apart

equally spaced points between 0 and 2t we get

. n—1 _ n—1
Dm = 1ka g miTn — 1ka o " where f =f(2kn/n)

N k=0 n k=0

just like interpolation! 59

CSE 421: Introduction to

| Algorithms

Divide and Conquer
Beyond the Master Theorem
Median and Quicksort

Paul Beame

60

i Today

= Divide and conquer examples
= Simple, randomized median algorithm
« Expected O(n) time

= Not so simple, deterministic median
algorithm

=« Worst case O(n) time

= Expected time analysis for Randomized
QuickSort

=« Expected O(n log n) time

61

i Order problems: Find the ki smallest

= Runtime models
= Machine Instructions
= Comparisons
= Minimum
= O(n) time
= N-1 comparisons
= 2"d Smallest
= O(n) time
= 7 comparisons

62

i Median Problem

= k" smallest for k = n/2
= Easily done in O(n log n) time with
sorting

= How can the problem be solved in O(n)
time?

= Select(k, n) — find the k-th smallest from
a list of length n

63

i Divide and Conquer

= T(n)=n+ T(an) for oo < 1
= Linear time solution

= Select algorithm — in linear time, reduce
the problem from selecting the k-th
smallest of n values to the j-th smallest
of an values, for o < 1

64

i Quick Select

QSelect(k, S)

Choose element x from S
S ={yinS|y<x}
Se={yinS|y=x}
Se={yinS|y>x)
if | S, | 2k

return QSelect(k, S,)
else if |S;| + [Sg| = k

return X

else
return QSelect(k - |S,| - |Sgl|, Sg)

65

Implementing
i “Choose an element x”

= Ideally, we would choose an x in the
middle, to reduce both sets in half and
guarantee progress

= Method 1
= Select an element at random

= Method 2
= BFPRT Algorithm

= Select an element by a complicated, but
linear time method that guarantees a good
split

66

i Random Selection

Consider a call to QSelect(k, S), and let
S’ be the elements passed to the
recursive call.

With probability at least V2, |S’| < %4|S

I I I
t t t t
bad x good x good X bad X

elements of S listed in sorted order

— On average only 2 recursive calls
before the size of S’ is at most 3n/4

67

i Expected runtime is O(n)

= Given x, one pass over S to determine
S, Sg, and S; and their sizes: cn time.

= EXxpect 2cn cost before size of S” drops to
at most 3|S|/4

= Let T(n) be the expected running time
= T(n) < T(3n/4) + 2¢n
< 2ch + (%) 2cn + (34)? 2cn + ...
<2cn (1+ (34) + (34)%? + ...)

68

Making the algorithm
deterministic

|

= In O(n) time, find an element that
guarantees that the larger set in the spilit
has size at most % n

69

Algorithm

i Blum-Floyd-Pratt-Rivest-Tarjan

= Divide S into n/5 sets of size 5
= Sort each of these sets of size 5

= Let M be the set of all medians of the
sets of size 5

= Let x be the median of M
=S ={yinS|y<x}, Sg={yinS|y>x}
= Claim: |S)| <34 |S], |Sg| <% |S]

70

BFPRT, Step 1: Construct sets of
size 5, sort each set

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8,
69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11,9, 5,17, 77

13 S) 62 32 47 81 64 o1 11
15 16 41 12 8 18 98 21 9
32 45 81 /3 69 25 96 12 S
14 86 52 25 9 42 91 36 17
95 65 32 81 7 91 6 11 77
95 86 81 81 69 91 98 o1 77
32 65 62 /3 47 81 96 36 17
15 45 52 32 S 42 91 21 11
14 16 41 25 8 25 64 12 9
13 5 32 12 7 18 6 11 5

71

BFPRT, Step 2: Find median of
column medians

95 86 81 81 69 91 98 o1 77
32 65 62 /3 47 81 96 36 17
15 45 52 32 9 42 91 21 11
14 16 41 25 8 25 64 12 9
13 5 32 12 / 18 6 11 5

72

BFPRT Recurrence

4

Sorting all n/5 lists of size 5
= C’htime

Finding median of set M of medians
= Recursive computation: T(n/5)

Computing sets S, Sg, Sg and §°
= C’ntime

Solving selection problem on S’
= Recursive computation: T(3n/4) since |S’|< % n

73

i T(n) < cn + T(n/5) + T(3n/4) is O(n)

= Key property
= 3/4+1/5<1 (The sumis 19/20)

= Sum of problem sizes decreases by 19/20
factor per level of recursion

= Overhead per level is linear in the sum of the
problem sizes

= Overhead decreases by 19/20 factor per level of
recursion

= Total overhead is linear (sum of geometric series
with constant ratio and linear largest term)

74

i Quick Sort

QuickSort(S)
if S is empty, return
Choose element x from S “pivot”
S ={yinS|y<x)
Se={yinS|y=x}
Se={yinS|y>x}
return [QuickSort(S,), Sg, QuickSort(Sg)]

75

i QuickSort

= Pivot Selection
= Choose the median
= T(n) = T(n/2) + T(n/2) + cn, O(n log n)
= Choose arbitrary element
= Worst case — O(n?)
= Average case — O(n log n)
= Choose random pivot
« Expected time — O(n log n)

76

“Global analysis™

i Expected run time for QuickSort:

= Count comparisons

= @;, a; — elements in positions i and j in
the final sorted list. p;; the probability
that a; and a; are compared

= Expected number of comparisons:

Zi<j Pij

77

i Lemma: P; < 2/(j—i + 1)

If a; and a; are compared then it must be
during the call when they end up in different
subproblems

- Before that, they aren’t compared to

each other

- After they aren’t compared to each other
During this step they are only compared if one

of them is the pivot
Since all elements between a; and a; are also in the
subproblem this is 2 out of at least j-i+1 choices

78

i Average runtime is 2nin n

Lo Py S 2ig 2/(i+1) wite jked
=2 Z:‘:Z 1/(k+1)
<2 (n-1) (H,-1)

where H =1+1/2+1/3+1/4+...+1/n
=In n +O(1)

<2nInn +0(n) < 1.387nlog,n

79

