
1

CSE 421:  Introduction to 

Algorithms

Graph Traversal

Paul Beame



2

Undirected Graph   G = (V,E)

1

2
10

9

8

3

4

5

6

7

11

12

13



3

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5

6

7

11

12

13



4

Graph Traversal

� Learn the basic structure of a graph

� Walk from a fixed starting vertex s to 
find all vertices reachable from s



5

Generic Graph Traversal Algorithm

Find: set R of vertices reachable from s∈V

Reachable(s): 

R← {s}

While there is a (u,v)∈E where u∈R and v∉R

Add v to R

Return R



6

Generic Traversal Always Works

� Claim: At termination R is the set of nodes 
reachable from s

� Proof
� ⊆: For every node v∈R there is a path from s to v

� ⊇: Suppose there is a node w∉R reachable from s
via a path P

� Take first node v on P such that v∉R

� Predecessor u of v in P satisfies
� u ∈ R

� (u,v)∈E

� But this contradicts the fact that the algorithm 
exited the while loop. 



7

Graph Traversal

� Learn the basic structure of a graph

� Walk from a fixed starting vertex s to 
find all vertices reachable from s

� Three states of vertices
� unvisited

� visited/discovered  (in R)

� fully-explored (in R and all neighbors in R)



8

Breadth-First Search

� Completely explore the vertices in order 
of their distance from s

� Naturally implemented using a queue



9

BFS(s)

Global initialization: mark all vertices “unvisited”
BFS(s) 

mark  s “visited”; R←{s}; layer L0←{s}

while Li not empty

Li+1 ← ∅

For each u∈Li

for each edge {u,v}

if (v is “unvisited”) 

mark v “visited”

Add v to set R and to layer Li+1

mark u “fully-explored”

i ← i+1



10

Properties of BFS(v)

� BFS(s) visits x if and only if there is a path in G from 

s to x.

� Edges followed to undiscovered vertices define a 

“breadth first spanning tree" of G

� Layer i in this tree, Li

� those vertices u such that the shortest path in G
from the root s is of length i.

� On undirected graphs

� All non-tree edges join vertices on the same or 
adjacent layers



11

Properties of BFS

� On undirected graphs

� All non-tree edges join vertices on the 
same or adjacent layers

� Suppose not
� Then there would be vertices (x,y) such that 

x∈Li and y∈Lj and j>i+1

� Then, when vertices incident to x are 

considered in BFS y would be added to Li+1

and not to Lj



12

BFS Application: Shortest Paths

0

1

2

3

4
can label by distances from start

Tree gives shortest 

paths from start vertex



13

Graph Search Application: 
Connected Components

� Want to answer questions of the 
form:

� Given: vertices u and v in G

� Is there a path from u to v?

� Idea: create array A such that                  
A[u] = smallest numbered vertex 

that is connected to u

� question reduces to whether A[u]=A[v]?

Q: Why 

not create 
an array 
Path[u,v]?



14

Graph Search Application: 
Connected Components

� initial state: all v unvisited
for s←1 to n do                                          

if state(s) ≠ “fully-explored” then                                 
BFS(s): setting A[u] ←s for each u found 

(and marking u visited/fully-explored)         
endif                                                                               

endfor

� Total cost: O(n+m)
� each vertex is touched once in this outer 

procedure and the edges examined in the different 
BFS runs are disjoint 

� works also with Depth First Search



15

DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"

DFS(u)

mark  u “visited” and add u to R

for each edge {u,v}

if (v is “unvisited”) 

DFS(v)

end for

mark u “fully-explored”



16

Properties of DFS(s)

� Like BFS(s):
� DFS(s) visits x if and only if there is a path in G

from s to x

� Edges into undiscovered vertices define a "depth 
first spanning tree" of G

� Unlike the BFS tree: 
� the DFS spanning tree isn't minimum depth

� its levels don't reflect min distance from the root

� non-tree edges never join vertices on the same or 
adjacent levels

� BUT…



17

Non-tree edges

� All non-tree edges join a vertex and one 
of its descendents/ancestors in the DFS 
tree

� No cross edges.



18

No cross edges in DFS on undirected 
graphs

� Claim: During DFS(x) every vertex marked visited is 
a descendant of x in the DFS tree T

� Claim: For every x,y in the DFS tree T,  if (x,y) is an 
edge not in T then one of x or y is an ancestor of the 
other in T

� Proof:
� One of x or y is visited first, suppose WLOG that x is visited 

first and therefore DFS(x) was called before DFS(y)

� During DFS(x), the edge (x,y) is examined

� Since (x,y) is a not an edge of T, y was visited when the 
edge (x,y) was examined during DFS(x)

� Therefore y was visited during the call to DFS(x) so y is a 
descendant of x.



19

Applications of Graph Traversal:
Bipartiteness Testing

� Easy: A graph G is not bipartite if it contains 
an odd length cycle

� WLOG: G is connected
� Otherwise run on each component

� Simple idea: start coloring nodes starting at a 
given node s
� Color s red

� Color all neighbors of s blue

� Color all their neighbors red

� If you ever hit a node that was already colored

� the same color as you want to color it, ignore it

� the opposite color, output error



20

BFS gives Bipartiteness

� Run BFS assigning all vertices from layer Li

the color i mod 2

� i.e. red if they are in an even layer, blue if 

in an odd layer 

� If there is an edge joining two vertices from 

the same layer then output “Not Bipartite”



21

Why does it work?

s

Li

LjLj

u v

u and v have a common ancestor

Cycle length 2(j-i)+1



22

DFS(v) for a directed graph

1

2
10

9

8

3

4

5

6

7

11

12

13



23

DFS(v)

1

2
10

9

8

3

4

5

6

7

11

12

13

tree edges

back edges

forward 
edges

← cross edges    

NO → cross edges



24

Properties of Directed DFS

� Before DFS(s) returns, it visits all 
previously unvisited vertices reachable 
via directed paths from s

� Every cycle contains a back edge in the 
DFS tree



25

Directed Acyclic Graphs

� A directed graph G=(V,E) is acyclic if it 
has no directed cycles

� Terminology: A directed acyclic graph is 
also called a DAG



26

Topological Sort

� Given: a directed acyclic graph (DAG) G=(V,E)

� Output: numbering of the vertices of G with 
distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices

� Applications
� nodes represent tasks

� edges represent precedence between tasks

� topological sort gives a sequential schedule 
for solving them 



27

Directed Acyclic Graph



28

In-degree 0 vertices

� Every DAG has a vertex of in-degree 0

� Proof: By contradiction
� Suppose every vertex has some incoming edge

� Consider following procedure:

while (true) do

v←some predecessor of v

� After n+1 steps where n=|V| there will be a 
repeated vertex

� This yields a cycle, contradicting that it is a 
DAG



29

Topological Sort

� Can do using DFS

� Alternative simpler idea:

� Any vertex of in-degree 0 can  be given 

number 1 to start

� Remove it from the graph and then give a 

vertex of in-degree 0 number 2, etc. 



30

Topological Sort

1



31

Topological Sort

1 2



32

Topological Sort

1

3

2



33

Topological Sort

1

4
3

2



34

Topological Sort

1

4
3

5

2



35

Topological Sort

1

4
3

5

6

2



36

Topological Sort

1

4
3

5

6

7

2



37

Topological Sort

1

4
3

8

5

6

7

2



38

Topological Sort

1

4
3

8

9

5

6

7

2



39

Topological Sort

1

4
3

10

8

9

5

6

7

2



40

Topological Sort

1

4
3

10

8

9

11

5

6

7

2



41

Topological Sort

1

4
3

12

10

8

9

11

5

6

7

2



42

Topological Sort

1

4
3

12

10

8

9

11

13

5

6

7

2



43

Topological Sort

1

4
3

12

10

8

9

11

13

14

5

6

7

2



44

Implementing Topological Sort

� Go through all edges, computing array with in-degree 

for each vertex     O(m+n)

� Maintain a queue (or stack) of vertices of  in-degree 0

� Remove any vertex in queue and number it

� When a vertex is removed, decrease in-degree of 

each of its neighbors by 1 and add them to the queue 

if their degree drops to 0

Total cost O(m+n)


