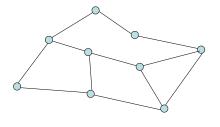


CSE 421 Algorithms

Richard Anderson Lecture 27 Survey of NP Complete Problems

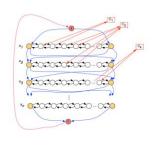
Announcements

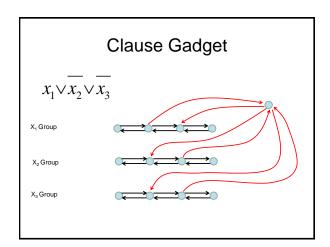

- · Final exam,
 - Monday, December 12, 2:30-4:20 pm
 - Comprehensive (2/3 post midterm, 1/3 pre midterm)
- · Review session
 - -TBD
- · Online course evaluations available

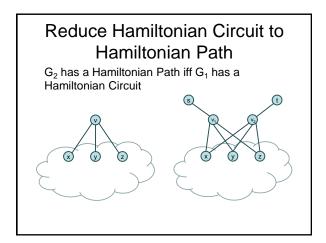
NP Complete Problems

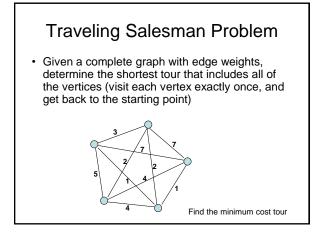
- 1. Circuit Satisfiability
- 2. Formula Satisfiability a. 3-SAT
- 3. Graph Problems
 - a. Independent Set
 - b. Vertex Cover
 - c. Clique
- 4. Path Problems
 - a. Hamiltonian cycle
 - b. Hamiltonian path
 - c. Traveling Salesman
- 5. Partition Problems
 - a. Three dimensional matching
 - b. Exact cover
- 6. Graph Coloring
- 7. Number problems
 - a. Subset sum
- 8. Integer linear programming
- 9. Scheduling with release times and deadlines

Hamiltonian Circuit Problem


• Hamiltonian Circuit – a simple cycle including all the vertices of the graph

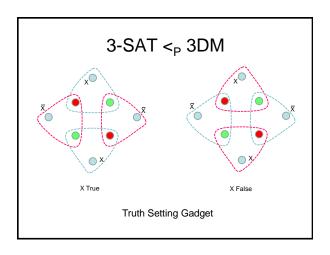


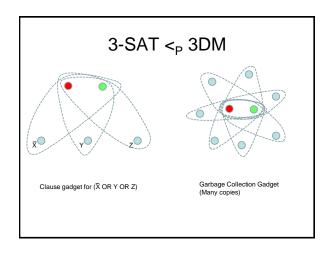

Thm: Hamiltonian Circuit is NP Complete


· Reduction from 3-SAT

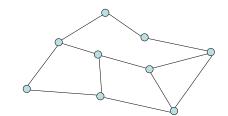
Page 475 in text



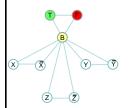




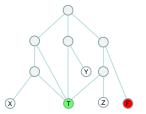
Exact Cover (sets of size 3) XC3


Given a collection of sets of size 3 of a domain of size 3N, is there a sub-collection of N sets that cover the sets

 $\begin{array}{l} (A,\,B,\,C),\,(D,\,E,\,F),\,(A,\,B,\,G),\\ (A,\,C,\,I),\,(B,\,E,\,G),\,(A,\,G,\,I),\\ (B,\,D,\,F),\,(C,\,E,\,I),\,(C,\,D,\,H),\\ (D,\,G,\,I),\,(D,\,F,\,H),\,(E,\,H,\,I),\\ (F,\,G,\,H),\,(F,\,H,\,I) \end{array}$


3DM < XC3

Graph Coloring


- NP-Complete
 - Graph K-coloring
 - Graph 3-coloring
- PolynomialGraph 2-Coloring

3-SAT <_P 3 Colorability

Truth Setting Gadget

Clause Testing Gadget

(Can be colored if at least one input is T)

Number Problems

- · Subset sum problem
 - Given natural numbers w_1,\ldots,w_n and a target number W, is there a subset that adds up to exactly W?
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in O(nW) time

XC3 <p SUBSET SUM

Idea: Represent each set as a bit vector, then interpret the bit vectors as integers. Add them up to get the all one's vector.

 $\{x_3,\,x_5,\,x_9\} => 001010001000$

Does there exist a subset that sums to exactly 11111111111?

Annoying detail: What about the carries?

Integer Linear Programming

- Linear Programming minimize linear function subject to linear constraints
- Integer Linear Programming require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for x_i's

Constraint for clause $x_1 \lor x_2 \lor x_3$

 $x_1 + (1 - x_2) + (1 - x_3) > 0$

Scheduling with release times and deadlines

- Tasks T_1, \dots, T_n with release time $r_i,$ deadline $d_i,$ and work w_i
- Reduce from Subset Sum
 Given natural numbers w₁,..., w_n and a target number K, is there a subset that adds up to exactly K?
 Suppose the sum w₁+...+ w_n = W
- Task T_i has release time 0 and deadline W+1
- Add an additional task with release time K, deadline K+1 and work 1