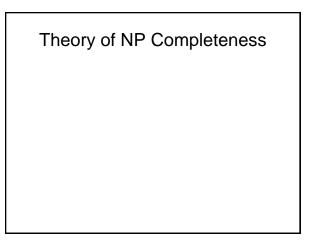
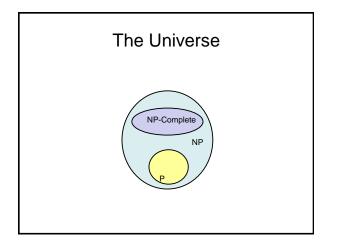


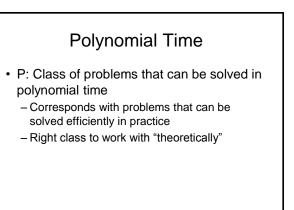


Algorithms vs. Lower bounds

- Algorithmic Theory
 - What we can compute
 - I can solve problem X with resources R
 - Proofs are almost always to give an algorithm that meets the resource bounds
- Lower bounds
 - How do we show that something can't be done?







Decision Problems

- Theory developed in terms of yes/no problems
 - Independent set
 - Given a graph G and an integer K, does G have an independent set of size at least K
 - Network Flow
 - Given a graph G with edge capacities, a source vertex s, and sink vertex t, and an integer K, does the graph have flow function with value at least K

Definition of P

Decision problems for which there is a polynomial time algorithm

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is x a multiple of y?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid's algorithm	34, 39	34, 51
PRIMES	ls x prime?	Agrawal, Kayal, Saxena (2002)	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta
LSOLVE	Is there a vector x that satisfies $Ax = b$?	Gaussian elimination	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & , & 1 \\ 0 & 1 & 1 & & 1 \end{bmatrix}$

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- Independent set of size K

 The Independent Set
- Satifisfiable formula
 Truth assignment to the variables
- Hamiltonian Circuit Problem
 A cycle including all of the vertices
- K-coloring a graph

 Assignment of colors to the vertices

Certifiers and Certificates: 3-Satisfiability

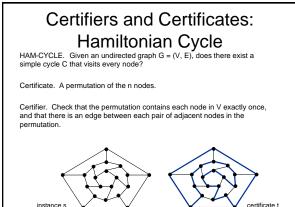
SAT: Does a given CNF formula have a satisfying formula Certificate: An assignment of truth values to the n boolean variables Certifier: Check that each clause has at least one true literal,

instance s

 $(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$

certificate t

 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$



Polynomial time reductions

- · Y is Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notations: $Y <_P X$

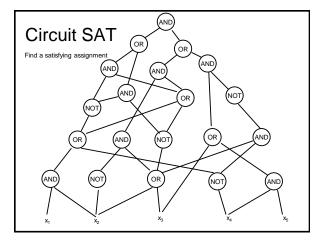
Lemmas

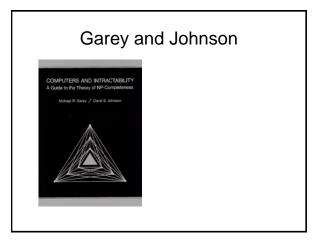
- Suppose Y <_P X. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- Suppose Y <_P X. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- A problem X is NP-complete if – X is in NP
 - For every Y in NP, $Y \leq_P X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and X <_P Z
 Then Z is NP-Complete

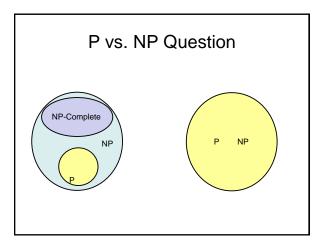
Cook's Theorem • The Circuit Satisfiability Problem is NP-Complete

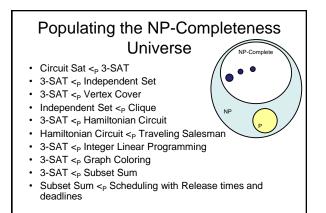


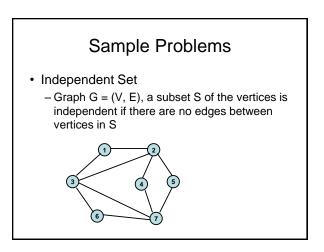


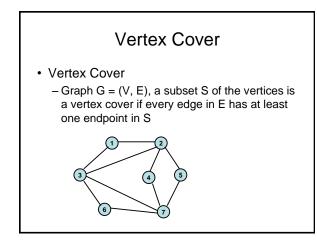
History

- Jack Edmonds
 - Identified NP
- Steve Cook
 - Cook's Theorem NP-Completeness
- Dick Karp
 - Identified "standard" collection of NP-Complete Problems
- Leonid Levin
 - Independent discovery of NP-Completeness in USSR



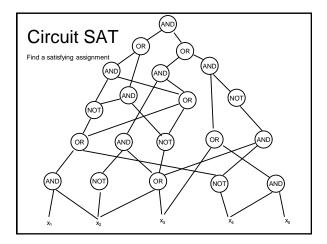






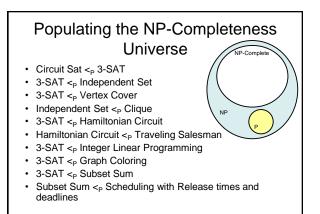
Cook's Theorem

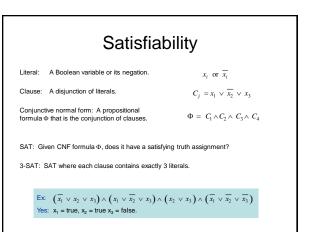
- The Circuit Satisfiability Problem is NP-Complete
- · Circuit Satisfiability
 - Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

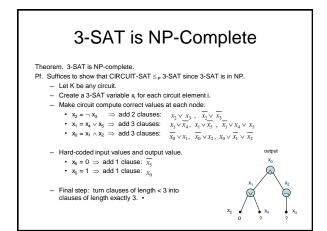


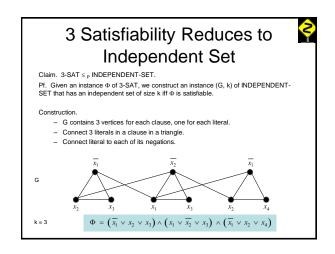
Proof of Cook's Theorem

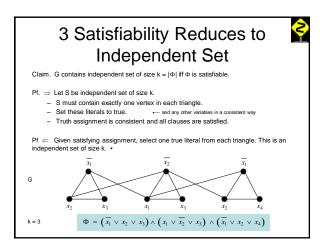
- · Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

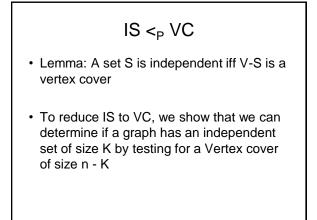


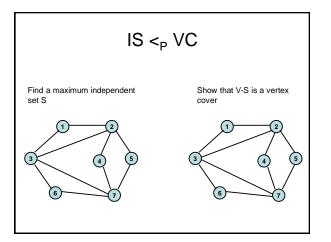


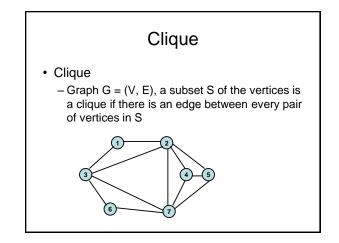


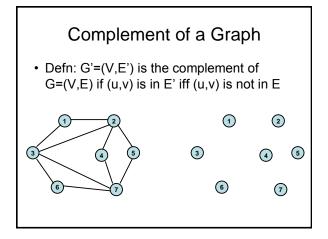


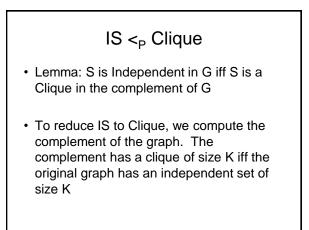












Hamiltonian Circuit Problem • Hamiltonian Circuit – a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete • Reduction from 3-SAT

