

Network Flow Applications

Announcements

- Homework 9, Due Friday, December 2
- Tentative lecture schedule:

Wed, Nov 23	Net Flow Applications
Mon, Nov 28	Net Flow Applications
Wed, Nov 30	NP-Completeness
Fri, Dec 2	NP-Completeness
Mon, Dec 5	NP-Completeness
Wed, Dec 7	Net Flow Algorithms
Fri, Dec 9	Beyond NP-Completeness

Today's topics

- Network flow reductions
 - Multi source flow
 - Reviewer Assignment
- Baseball Scheduling
- Image Segmentation
- Reading: 7.5, 7.6, 7.10-7.12

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)

Review

- Flow is conserved at vertices other than s and t
 Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Review

Key Ideas for Network Flow

- Residual Graph for a Flow
- · Augmenting a flow
- Ford Fulkerson Algorithm
- Max Flow / Min Cut Theorem
- Practical Flow Algorithms
- Modelling problems as Network Flow or Minimum Cut

Multi-source network flow

- Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_i
- · Solve with Single source network flow

Bipartite Matching

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- · A matching M is a subset of the edges that does not share any vertices
- · Find a matching as large as possible

Resource Allocation: Assignment of reviewers

A set of papers P_1, \ldots, P_n A set of reviewers R_1, \ldots, R_m

Review

- •
- Paper P_i requires A_i reviewers Reviewer R_i can review B_j papers
- For each reviewer $R_j,$ there is a list of paper L_{j1}, \ldots, L_{jk} that R_j is gualified to review

Resource Allocation: Illegal Campaign Donations

- Candidates C_i, . . ., C_n
 - Donate b_i to C_i
 - Limit of Li dollars per candidate Ci
 - With a little help from your friends - Friends F₁, . . ., F_m
 - Fi can give ai to candidate Ci
 - Give at most M_i to F_i

Baseball elimination

- Can the Fruit Flies win or tie the league?
- Remaining games:

 AC, AD, AD, AD, AD, AF, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE, BF, CE, CE, CE, CF, CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
 - Ants (2)
 - Bees (3)
 - Cockroaches (3)Dinosaurs (5)
 - Diffusauls (5)
 Earthworms (5)
- 18 games to play
 - AC, AD, AD, AD, AD, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE, CE, CE, CE, DE

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Image Segmentation

 Separate foreground from background

Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij} penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A,B) = \Sigma_{\{i \text{ in } A\}}a_i + \Sigma_{\{j \text{ in } B\}}b_j \Sigma_{\{(i,j) \text{ in } E, i \text{ in } A, j \text{ in } B\}}p_{ij}$

