CSE 421 Algorithms

Lecture 22
Network Flow, Part 2

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- ResidualGraph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Simple applications of Max Flow

Cuts in a graph

- Cut: Partition of V into disjoint sets S , T with s in S and t in T .
- $\operatorname{Cap}(S, T)$: sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
- Sum of flows out of S minus sum of flows into S
- Flow(S,T) <= Cap(S,T)

Ford-Fulkerson Algorithm (1956)
while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units along in G

If the sum of the capacities of edges leaving S is at most C , then the algorithm takes at most C iterations

What is $\operatorname{Cap}(S, T)$ and $\operatorname{Flow}(S, T)$

$S=\{s, a, b, e, h\}, \quad T=\{c, f, i, d, g, t\}$

What is $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$ and $\operatorname{Flow}(\mathrm{S}, \mathrm{T})$

$\operatorname{Cap}(\mathrm{S}, \mathrm{T})=95, \quad \operatorname{Flow}(\mathrm{~S}, \mathrm{~T})=80-15=65$

Minimum value cut

Find a minimum value cut

Find a minimum value cut

Find a minimum value cut

MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity

Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity

What can we say about the flows and capacity between u and v ?

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

Performance

- The worst case performance of the FordFulkerson algorithm is horrible

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
- $\mathrm{O}\left(\mathrm{m}^{2} \log (\mathrm{C})\right)$ time algorithm for network flow
- Find the shortest augmenting path
- O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
- O(mnlog n) time algorithm for network flow

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Application		
- A collection of teachers		
- A collection of courses		
- And a graph showing which teachers can		
teach which courses		
RA \bigcirc		

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths lon

