Shortest Paths with Dynamic Programming

Bellman-Ford Algorithm

Paul Beame

Shortest paths with negative cost edges

- Dijsktra's algorithm failed with negative-cost edges
- What can we do in this case?
- Negative-cost cycles could result in shortest paths with length $-\infty$
- but these would be infinitely long...
- What if we just wanted shortest paths of exactly i edges?

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(mlogn) time, positive cost edges
- Bellman-Ford Algorithm
- O(mn) time for graphs with negative cost edges

Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from s to t based on the \# of edges in the path
- Let $\operatorname{Cost}(\mathbf{s}, \mathbf{w}, \mathbf{i})=\operatorname{cost}$ of minimum-length path
from s to w using exactly i edges.
- $\operatorname{Cost}(\mathbf{s}, \mathbf{w}, \mathbf{0})=\left\{\begin{array}{c}0 \text { if } \mathbf{w}=\mathbf{s} \\ \infty \text { otherwise }\end{array}\right.$
$-\operatorname{Cost}(\mathbf{s}, \mathbf{w}, \mathbf{i})=\min _{(\mathbf{v}, \mathbf{w}) \in \mathbf{E}}\left(\operatorname{Cost}(\mathbf{s}, \mathbf{v}, \mathbf{i} \mathbf{- 1})+\mathbf{C}_{\mathbf{v w}}\right)$

Bellman-Ford

- Observe that the recursion for Cost(s,w,i) doesn't change s
- Only store an entry for each w and i - $\mathrm{OPT}_{\mathrm{i}}(\mathbf{w})$
- OPT $_{0}(\mathbf{w})=\left\{\begin{array}{l}\mathbf{0} \text { if } \mathbf{w}=\mathbf{s} \\ \infty \text { otherwise }\end{array}\right.$
- OPT $_{i}(\mathbf{w})=\min _{(v, w) \in E}\left(\right.$ OPT $\left._{\mathrm{i}-1}(\mathbf{v})+\mathbf{c}_{\mathbf{v w}}\right)$

Shortest paths with negative cost edges (Bellman-Ford)

- Suppose no negative-cost cycles in G
- Shortest path from s to t has at most n-1 edges
- If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can't have - ve cost

Algorithm, Version 1

foreach w
$\mathrm{M}[0, w]=$ infinity;
$\mathrm{M}[0, \mathrm{~s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min _{v}(M[i-1, v]+\operatorname{cost}[v, w]) ;$

What if we want to allow up to i edges rather than require exactly i edges?

Algorithm, Version 2

foreach w
$\mathrm{M}[0, w]=$ infinity;
$\mathrm{M}[0, \mathrm{~s}]=0$;
for $i=1$ to $n-1$
foreach w
$M[i, w]=\min \left(M[i-1, w], \min _{v}(M[i-1, v]+\operatorname{cost}[v, w])\right)$

Now $M[i, w] \leq M[i-1, w] \leq \ldots \leq M[0, w]$.
If all we only care about is finding short paths we can use the shortest length we have found and forget \# of hops

Algorithm, Version 3

> foreach w $$
\begin{array}{l}M[w]=\text { infinity; } \\ M[s]=0 \\ \text { for } i=1 \text { to } n-1 \\ \text { foreach } w \\ \quad M[w]=\min \left(M[w], \min _{v}(M[v]+\operatorname{cost}[v, w])\right)\end{array}
$$

Correctness Proof for Algorithm 3

Key lemma - at the end of iteration i, for all $w, M[w] \leq M[i, w] ;$

- Reconstructing the path:
- Set $P[w]=v$, whenever $M[w]$ is updated from vertex v

Other details

- Can run algorithm and stop early if M doesn't change in an iteration
- Even better, one can update only neighbors x of vertices w whose \mathbf{M} value changed in an iteration

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=v$ then $M[w] \geq M[v]+\operatorname{cost}(v, w)$
- Equal when w is updated
- M[v] could later be reduced after update
- Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots \mathbf{v}_{\mathbf{k}}$ be a cycle in the pointer graph with $\left(\mathbf{v}_{\mathbf{k}}, \mathbf{v}_{\mathbf{1}}\right)$ the last edge added
- Just before the update
- $M\left[\mathbf{v}_{\mathbf{j}}\right] \geq \mathrm{M}\left[\mathbf{v}_{\mathbf{j}+1}\right]+\operatorname{cost}\left(\mathbf{v}_{\mathrm{j}+1}, \mathbf{v}_{\mathbf{j}}\right)$ for $\mathrm{j}<\mathrm{k}$
- $M\left[\mathbf{v}_{k}\right]>M\left[\mathbf{v}_{\mathbf{1}}\right]+\operatorname{cost}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{k}}\right)$
- Adding everything up
= $0>\operatorname{cost}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)+\operatorname{cost}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathbf{v}_{\mathbf{k}}, \mathbf{v}_{\mathbf{1}}\right)$

Foreign Exchange Arbitrage

	USD	EUR	CAD
USD	------	0.8	1.2
EUR	1.2	------	1.6
CAD	0.8	0.6	-----

Finding negative cost cycles

- What if you want to find negative cost cycles?

Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices

- Update distances in order of topological sort
- Only one pass through vertices required
- $\mathrm{O}(\mathbf{n}+\mathbf{m})$ time

