
1

Shortest Paths with Dynamic

Programming

 Bellman-Ford Algorithm

Paul Beame

Shortest Path Problem

 Dijkstra’s Single Source Shortest Paths
Algorithm

 O(mlog n) time, positive cost edges

 Bellman-Ford Algorithm

 O(mn) time for graphs with negative cost
edges

3

Shortest paths with negative cost edges

 Dijsktra’s algorithm failed with negative-cost

edges

 What can we do in this case?

 Negative-cost cycles could result in shortest paths

with length -

 but these would be infinitely long...

 What if we just wanted shortest paths of

exactly i edges?

4

Shortest paths with negative cost

edges (Bellman-Ford)

 We want to grow paths from s to t based on

the # of edges in the path

 Let Cost(s,w,i)=cost of minimum-length path

 from s to w using exactly i edges.

 Cost(s,w,0) = 0 if w=s

 otherwise

 Cost(s,w,i) = min(v,w)E(Cost(s,v,i-1)+cvw)

5

Bellman-Ford

 Observe that the recursion for

Cost(s,w,i) doesn’t change s

 Only store an entry for each w and i

 OPTi(w)

 OPT0(w)= 0 if w=s

 otherwise

 OPTi(w) = min(v,w)E(OPTi-1(v)+cvw)

6

Shortest paths with negative cost

edges (Bellman-Ford)

 Suppose no negative-cost cycles in G

 Shortest path from s to t has at most n-1 edges

 If not, there would be a repeated vertex which

would create a cycle that could be removed

since cycle can’t have –ve cost

2

Algorithm, Version 1

foreach w

 M[0, w] = infinity;

M[0, s] = 0;

for i = 1 to n-1

 foreach w

 M[i, w] = minv(M[i-1,v] + cost[v,w]);

What if we want to allow up to i edges

rather than require exactly i edges?

Algorithm, Version 2

foreach w

 M[0, w] = infinity;

M[0, s] = 0;

for i = 1 to n-1

 foreach w

 M[i, w] = min(M[i-1, w], minv(M[i-1,v] + cost[v,w]))

Now M[i,w] ≤ M[i-1,w] ≤ ... ≤ M[0,w] .
If all we only care about is finding short paths we can use

the shortest length we have found and forget # of hops

Algorithm, Version 3

foreach w

 M[w] = infinity;

M[s] = 0;

for i = 1 to n-1

 foreach w

 M[w] = min(M[w], minv(M[v] + cost[v,w]))

Correctness Proof for Algorithm 3

 Key lemma – at the end of iteration i, for

all w, M[w] ≤ M[i, w];

 Reconstructing the path:

 Set P[w] = v, whenever M[w] is updated

from vertex v

11

Bellman-Ford

s

6

2

- 4

5

-2

-3
8

7

9

7

12

Bellman-Ford

0

s

6

2

- 4

5

-2

-3
8

7

9

7

3

13

Bellman-Ford

0

7

6

s

6

2

- 4

5

-2

-3
8

7

9

7

14

Bellman-Ford

4

0

7 2

6

s

6

2

- 4

5

-2

-3
8

7

9

7

15

Bellman-Ford

4

0

7 2

2

s

6

2

- 4

5

-2

-3
8

7

9

7

16

Bellman-Ford

4

0

7 -2

2

s

6

2

- 4

5

-2

-3
8

7

9

7

17

Bellman-Ford

4

0

7 -2

2

s

6

2

- 4

5

-2

-3
8

7

9

7

18

Other details

 Can run algorithm and stop early if M doesn’t
change in an iteration

 Even better, one can update only neighbors x of
vertices w whose M value changed in an iteration

4

If the pointer graph has a cycle, then the

graph has a negative cost cycle

 If P[w] = v then M[w] ≥ M[v] + cost(v,w)

 Equal when w is updated

 M[v] could later be reduced after update

 Let v1, v2,…vk be a cycle in the pointer graph

with (vk,v1) the last edge added

 Just before the update

 M[vj] ≥ M[vj+1] + cost(vj+1, vj) for j < k

 M[vk] > M[v1] + cost(v1, vk)

 Adding everything up

 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1)

v2 v3

v1 v4

Finding negative cost cycles

 What if you want to find negative cost cycles?

2
2

2

3
2

-2

5

4

2

-3
6 1

-5

2

Foreign Exchange Arbitrage

USD EUR CAD

USD ------ 0.8 1.2

EUR 1.2 ------ 1.6

CAD 0.8 0.6 -----

USD

CAD EUR

1.2 1.2

0.6

USD

CAD
EUR

0.8 0.8

1.6 22

Bellman-Ford with a DAG

1

4
3

12

10

8

9

11

13

14

5

6

7

2

Edges only go from lower to higher-numbered vertices

• Update distances in order of topological sort

• Only one pass through vertices required

• O(n+m) time

