Shortest Paths with Dynamic

| Programming

Bellman-Ford Algorithm

Paul Beame

i Shortest Path Problem

= Dijkstra’s Single Source Shortest Paths
Algorithm

= O(mlog n) time, positive cost edges
= Bellman-Ford Algorithm

= O(mn) time for graphs with negative cost
edges

i Shortest paths with negative cost edges

= Dijsktra’s algorithm failed with negative-cost
edges
= What can we do In this case?

= Negative-cost cycles could result in shortest paths
with length -oo

= but these would be infinitely long...

= What if we just wanted shortest paths of
exactly i edges?

Shortest paths with negative cost
i edges (Bellman-Ford)

= We want to grow paths from s to t based on
the # of edges In the path

= Let Cost(s,w,I)=cost of minimum-length path
from s to w using exactly i edges.

= Cost(s,w,0)=| Oifw=s
oo otherwise

= Cost(s,w,i) = miny, ,,e(Cost(s,v,i-1)+C,,,)

i Bellman-Ford

= Observe that the recursion for
Cost(s,w,I) doesn’t change s
= Only store an entry for each w and |
= OPTi(w)

= OPTy(w)= | OIfw=s
o otherwise
- OPTi(W) = min(v,w)eE(OPTi-l(V)+CVW)

Shortest paths with negative cost
i edges (Bellman-Ford)

= Suppose no negative-cost cycles in G
= Shortest path from s to t has at most n-1 edges

= If not, there would be a repeated vertex which
would create a cycle that could be removed
since cycle can’'t have —ve cost

i Algorithm, Version 1

foreach w
M[O, w] = Infinity;
MJO, s] = 0;
fori=1ton-1
foreach w

M[i, w] = min (M[i-1,v] + cost[v,w]);

What if we want to allow up to | edges
rather than require exactly i edges?

i Algorithm, Version 2

foreach w
M[O, w] = Infinity;
MJO, s] = 0;
fori=1ton-1
foreach w

M[i, w] = min(M[i-1, w], min,(M[i-1,v] + cost[v,w]))

Now MI[i,w] £ M[i-1,w] £... £ M[0O,w] .
If all we only care about is finding short paths we can use
the shortest length we have found and forget # of hops

i Algorithm, Version 3

foreach w
M[w] = Infinity;
MJs] = O;
fori=1ton-1
foreach w

M[w] = min(M[w], min,(M[v] + cost[v,w]))

i Correctness Proof for Algorithm 3

= Key lemma — at the end of iteration i, for
all w, M[w] < M[i, wj;

= Reconstructing the path:

= Set P[w] = v, whenever M[w] Is updated
from vertex v

ﬁ Bellman-Ford

11

ﬁ Bellman-Ford

12

ﬁ Bellman-Ford

13

ﬁ Bellman-Ford

14

ﬁ Bellman-Ford

15

ﬁ Bellman-Ford

16

ﬁ Bellman-Ford

17

i Other detalls

= Can run algorithm and stop early if M doesn’t
change in an iteration

= Even better, one can update only neighbors x of
vertices w whose M value changed in an iteration

18

graph has a negative cost cycle

i If the pointer graph has a cycle, then the

= If P[w] = v then M[w] = M[v] + cost(v,w)
= Equal when w is updated
= M[v] could later be reduced after update
= Letv,, v,,...v, be a cycle in the pointer graph
with (v,,v,) the last edge added
= Just before the update

= M[vj] 2 M|v;,4] + cost(v;,,, v;) for] <k Vi Vg4
= M[v,] > M[v,] + cost(vy, vy)
= Adding everything up y y
2 3

= 0> cost(v,,V,) + cost(v,,vs) + ... + cost(v,, V,)

i Finding negative cost cycles

= What if you want to find negative cost cycles?

i Foreign Exchange Arbitrage

USD

EUR

O cAD

USD
EUR

) CAD

USD [EUR |CAD
USD |------ 0.8 |1.2
EUR 1.2 |--—---- 1.6
CAD (0.8 |0.6 |--—---

i Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
« Update distances in order of topological sort

* Only one pass through vertices required

* O(n+m) time

.
s®
(] “
e®
.
“

0. 0
T 2
- ©

AA

22

