CSE 421 Algorithms

Richard Anderson Lecture 18 **Dynamic Programming**

Announcements

- Nov 11, No class (holiday)
- · HW 7 is available
 - -5 dynamic programming problems

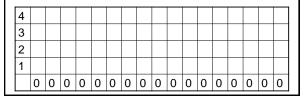
One dimensional dynamic programming: Interval scheduling

 $Opt[j] = max (Opt[j-1], w_i + Opt[p[j]])$

Two dimensional dynamic programming

K-segment linear approximation

 $Opt_{k}[j] = min_{i} \{ Opt_{k-1}[i] + E_{i,i} \}$ for 0 < i < j

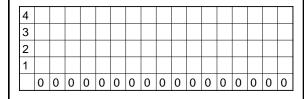


Two dimensional dynamic programming

Subset sum and knapsack

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_i] + w_i)

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_i] + v_i)



Alternate approach for Subset Sum

- Alternate formulation of Subset Sum dynamic programming algorithm
- Sum[i, K] = true if there is a subset of $\{w_1, \dots w_k\}$ that sums to exactly K, false otherwise
- Sum [i, K] = Sum [i -1, K] **OR** Sum[i 1, K w_i] Sum [0, 0] = 1; Sum[i, 0] = 0 for i!= 0
- To count the number of solutions
 - Count [i, K] = Count [i -1, K] + Count[i 1, K w_i]
 Count [0, 0] = 1; Count[i, 0] = 0 for i!= 0
- To allow for negative numbers, we need to fill in the array between K_{min} and K_{max}

Dynamic Programming Examples

- Examples
 - Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
 - Linebreaking with hyphenation
 - · Compare with HW problem 6, Pg 317
 - String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards
 - $-b_i = (p_i, v_i), v_i$: value of placing billboard at position p_i
- · Constraint:
 - At most one billboard every five miles
- Example
 - $-\{(6,5), (8,6), (12, 5), (14, 1)\}$

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], ..., Opt[n]
- · What is Opt[k]?

Input $b_1, ..., b_n$, where $b_i = (p_i, v_i)$, position and value of billboard i

Solution

```
\label{eq:continuous} \begin{split} j &= 0; \qquad \mbox{$//$ j$ is five miles behind the current position} \\ &\mbox{$//$ the last valid location for a billboard, if one placed at P[k]} \\ for $k := 1$ to $n$ \\ &\mbox{$while$ (P[j] < P[k] - 5)$} \\ &\mbox{$j := j + 1$;} \\ &\mbox{$j := j - 1$;} \\ &\mbox{$Opt[k] = Max(Opt[k-1], V[k] + Opt[j])$;} \end{split}
```

String approximation

Given a string S, and a library of strings B
 = {b₁, ...b_m}, construct an approximation of
 the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
 - MisMatch(i, j) number of mismatched characters of b_j, when aligned starting with position i in s.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- · What is Opt[k]?

Target string $S=s_1s_2...s_n$ Library of strings $B=b\{1,...,b_m\}$ MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.

Opt[k] = fun(Opt[0],...,Opt[k-1])

 How is the solution determined from sub problems?

Target string $S = s_1s_2...s_n$ Library of strings $B = \{b_1...b_m\}$ MisMatch $(i,j) = number of mismatched characters with <math>b_j$ when aligned starting at position i of S.

Solution

$$\begin{split} \text{for } i &:= 1 \text{ to n} \\ & \text{Opt[k]} = \text{Opt[k-1]} + \delta; \\ & \text{for } j := 1 \text{ to } |B| \\ & p = i - \text{len(b_j)}; \\ & \text{Opt[k]} = \text{min(Opt[k], Opt[p-1]} + \gamma \text{ MisMatch(p, j))}; \end{split}$$

Longest Common Subsequence

- C=c₁...c_g is a subsequence of A=a₁...a_m if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

occurranec attacggct occurrence tacgacca

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

· Align sequences with gaps

CAT TGA AT

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with x = 0 and $\delta > 0$

LCS Optimization

- $A = a_1 a_2 ... a_m$
- $B = b_1 b_2 ... b_n$
- Opt[j, k] is the length of LCS(a₁a₂...a_i, b₁b₂...b_k)

Optimization recurrence

If
$$a_i = b_k$$
, Opt[j,k] = 1 + Opt[j-1, k-1]

If
$$a_i != b_k$$
, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

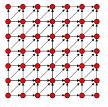
Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Opt[j, k] =

Let $a_j = x$ and $b_k = y$ Express as minimization

Dynamic Programming Computation



Code to compute Opt[j,k]

Storing the path information

How good is this algorithm?

 Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.