

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals $\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}$ with weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$, choose a maximum weight set of non-overlapping intervals
\qquad

6
3
5

- 7

0
6

Optimality Condition

- Opt[j$]$ is the maximum weight independent set of intervals $I_{1}, I_{2}, \ldots, I_{j}$
- Opt[j] $=\max \left(\operatorname{Opt}[\mathrm{j}-1], \mathrm{w}_{\mathrm{j}}+\operatorname{Opt}[\mathrm{p}[\mathrm{j}]]\right)$
- Where $p[j]$ is the index of the last interval which finishes before l_{j} starts

Algorithm

MaxValue(j) =

if $\mathrm{j}=0$ return 0
else return max(MaxValue(j-1), $\mathrm{w}_{\mathrm{j}}+\operatorname{MaxValue(p[j]))}$

Worst case run time: 2^{n}

A better algorithm

```
M[ j ] initialized to -1 before the first recursive call for all j
MaxValue(j) =
    if j = 0 return 0;
    else if M[j] !=-1 return M[ [ ];
    else
        M[ j ] = max(MaxValue(j-1), w w + MaxValue(p[ j ]);
        return M[j];
```


Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue \{
\}

Computing the solution

$$
\text { Opt[j] = max (Opt[j - 1], w } \mathrm{w}_{\mathrm{j}}+\operatorname{Opt}[\mathrm{p}[\mathrm{j}] \mathrm{]})
$$

Record which case is used in Opt computation

Notation

- Points $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$ ordered by x-coordinate ($p_{i}=\left(x_{i}, y_{i}\right)$)
- $E_{i, j}$ is the least squares error for the optimal line interpolating $p_{i}, \ldots p_{j}$

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of p_{1}, \ldots, p_{n} with two line segments
- $\mathrm{E}_{\mathrm{i}, \mathrm{j}}$ is the least squares error for the optimal line interpolating $\mathrm{p}_{\mathrm{i}}, \ldots \mathrm{p}_{\mathrm{j}}$

Optimal interpolation with k segments

- Optimal segmentation with three segments
$-\operatorname{Min}_{i, j}\left\{\mathrm{E}_{1, \mathrm{i}}+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{E}_{\mathrm{j}, \mathrm{n}}\right\}$
$-\mathrm{O}\left(\mathrm{n}^{2}\right)$ combinations considered
- Generalization to k segments leads to considering $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}-1}\right)$ combinations

Opt ${ }_{k}[j]$: Minimum error approximating $p_{1} \ldots p_{j}$ with k segments

How do you express Opt ${ }_{k}[j]$ in terms of Opt $_{\mathrm{k}-1}[1], \ldots$, Opt $_{\mathrm{k}-1}[\mathrm{j}]$?

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of $k-1$ segments on a smaller problem
\bigcirc

\bigcirc

Optimal multi-segment interpolation

```
Compute Opt[ k, j] for 0 < k < j < n
    for j:= 1 to n
        Opt[ 1, j] = E E 1,j
    for k:= 2 to n-1
        for j:= 2 to n
        t:= E E 1,j
        fori:= 1 to j-1
            t= min (t, Opt[k-1, i] + E Ei, )
        Opt[k, j] = t
```

- Penalty function associated with segments
- Cost = Interpolation error + C x \#Segments

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution
- Segments not specified in advance

Variable number of segments
 Variable number of segments

Penalty cost measure

- Opt [j$]=\min \left(\mathrm{E}_{1 \mathrm{i}, \mathrm{j}}, \min _{\mathrm{i}}\left(\operatorname{Opt}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{P}\right)\right)$

