CSE 421 Algorithms

Richard Anderson Lecture 16 **Dynamic Programming**

Dynamic Programming

- · Weighted Interval Scheduling
- Given a collection of intervals I_1, \dots, I_n with weights w_1, \ldots, w_n , choose a maximum weight set of non-overlapping intervals

Optimality Condition

- Opt[j] is the maximum weight independent set of intervals I₁, I₂, . . ., I_i
- Opt[j] = max(Opt[j-1], w_j + Opt[p[j]]) - Where p[j] is the index of the last interval which finishes before I_i starts

Algorithm

MaxValue(j) = if j = 0 return 0 else return max(MaxValue(j-1), w_i + MaxValue(p[j]))

Worst case run time: 2ⁿ

A better algorithm

M[j] initialized to -1 before the first recursive call for all j

```
MaxValue(j) =
  if j = 0 return 0;
  else if M[ j ] != -1 return M[ j ];
   else
        M[ j ] = max(MaxValue(j-1), w<sub>i</sub> + MaxValue(p[ j ]));
        return M[ j ];
```


+ $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j

- Optimal segmentation with three segments $-Min_{i,j}\{E_{1,i} + E_{i,j} + E_{j,n}\}$ $-O(n^2)$ combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

 $Opt_k[j]$: Minimum error approximating $p_1...p_j$ with k segments

How do you express $Opt_{k-1}[j]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[j]$?

Optimal multi-segment interpolation

```
Compute Opt[ k, j ] for 0 < k < j < n

for j := 1 to n

Opt[ 1, j] = E<sub>1,j</sub>;

for k := 2 to n-1

for j := 2 to n

t := E<sub>1,j</sub>

for i := 1 to j -1

t = min (t, Opt[k-1, i] + E<sub>i,j</sub>)

Opt[k, j] = t
```

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution

Penalty cost measure

Opt[j] = min(E_{1,j}, min_i(Opt[i] + E_{i,j} + P))