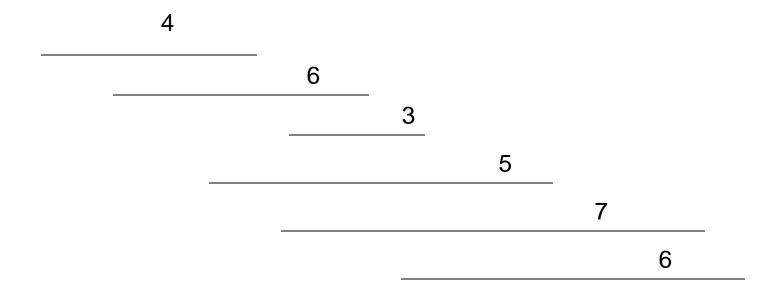
CSE 421 Algorithms

Richard Anderson
Lecture 16
Dynamic Programming

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals I₁,...,I_n with weights w₁,...,w_n, choose a maximum weight set of non-overlapping intervals



Optimality Condition

- Opt[j] is the maximum weight independent set of intervals I₁, I₂, . . . , I_i
- Opt[j] = max(Opt[j 1], w_j + Opt[p[j]])
 - Where p[j] is the index of the last interval which finishes before I_i starts

Algorithm

```
MaxValue(j) =

if j = 0 return 0

else

return max( MaxValue(j-1),

w<sub>j</sub> + MaxValue(p[ j ]))
```

Worst case run time: 2ⁿ

A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if j = 0 return 0;
 else if M[j] != -1 return M[j];
 else
 M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
 return M[j];

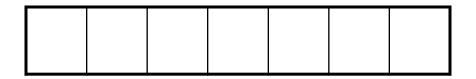
Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue {

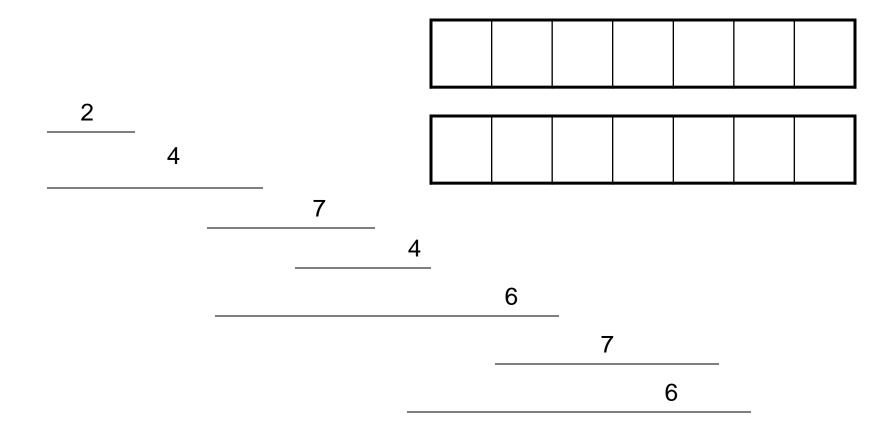
Fill in the array with the Opt values

Opt[j] = max (Opt[j - 1], w_j + Opt[p[j])



Computing the solution

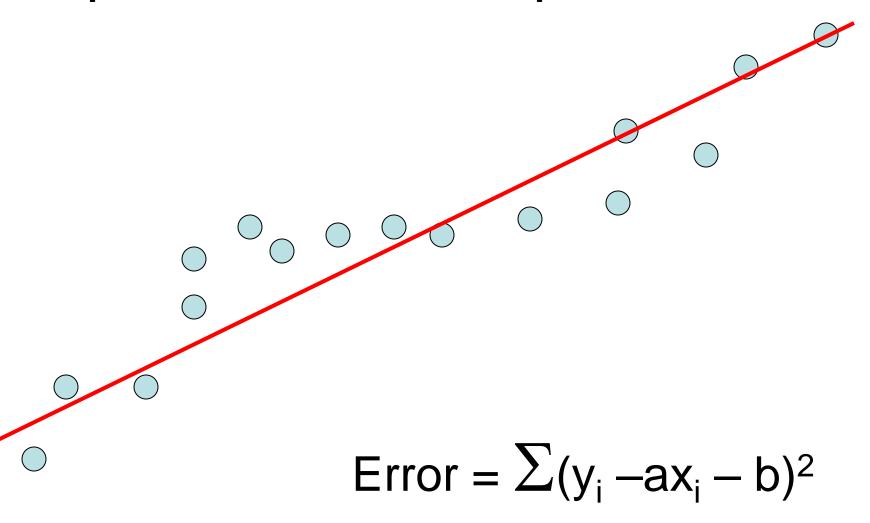
Opt[j] = max (Opt[j – 1], w_j + Opt[p[j]) Record which case is used in Opt computation



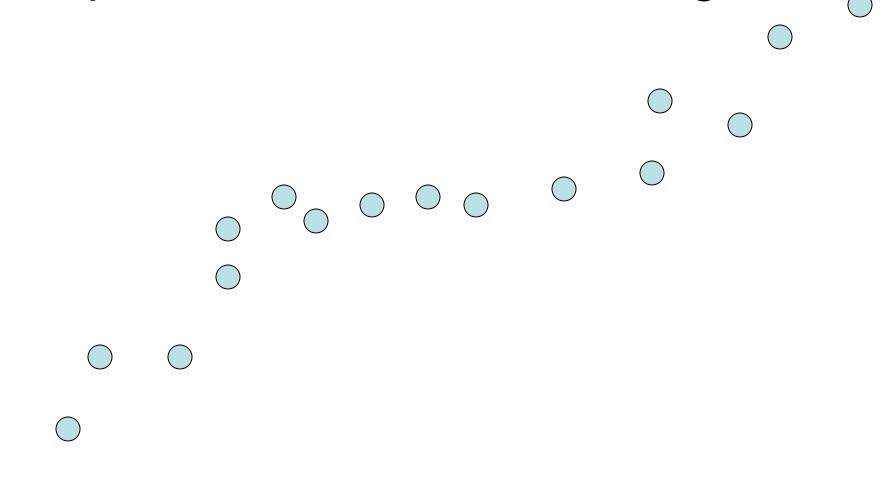
Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

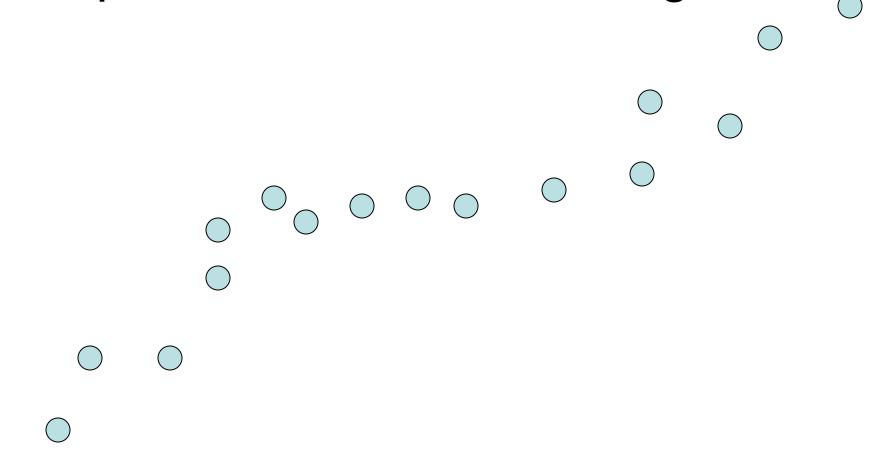
Optimal linear interpolation



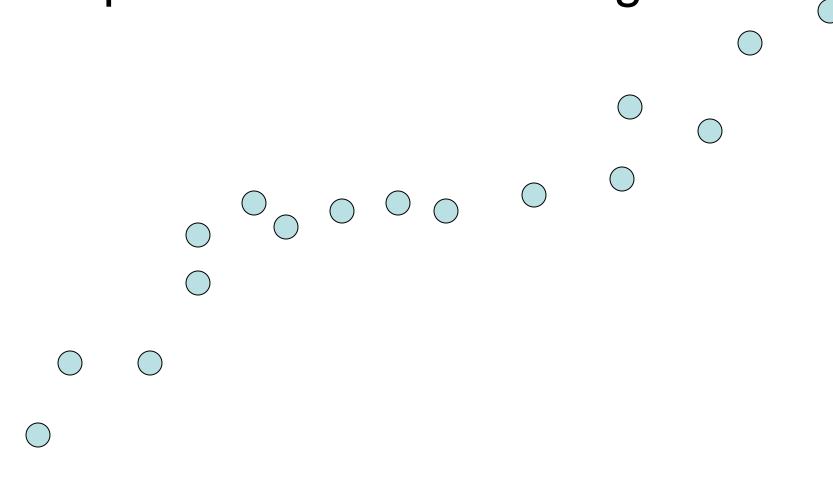
What is the optimal linear interpolation with three line segments



What is the optimal linear interpolation with two line segments

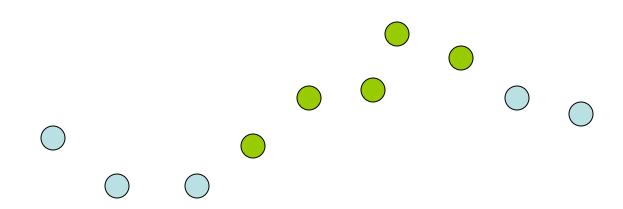


What is the optimal linear interpolation with n line segments



Notation

- Points p₁, p₂, . . ., p_n ordered by x-coordinate (p_i = (x_i, y_i))
- $E_{i,j}$ is the least squares error for the optimal line interpolating $p_i, \ldots p_i$



Optimal interpolation with two segments

 Give an equation for the optimal interpolation of p₁,...,p_n with two line segments

• $E_{i,j}$ is the least squares error for the optimal line interpolating $p_i, \ldots p_i$

Optimal interpolation with k segments

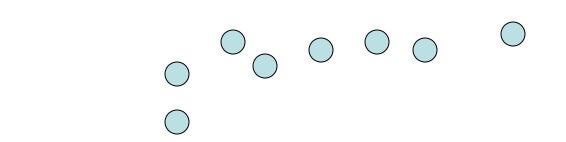
- Optimal segmentation with three segments
 - $Min_{i,i} \{ E_{1,i} + E_{i,j} + E_{j,n} \}$
 - O(n²) combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

Opt_k[j]: Minimum error approximating p₁...p_j with k segments

How do you express $Opt_k[j]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[j]$?

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem



Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

```
for j := 1 to n

Opt[ 1, j] = E_{1,j};

for k := 2 to n-1

for j := 2 to n

t := E_{1,j}

for i := 1 to j - 1

t = min(t, Opt[k-1, i] + E_{i,j})

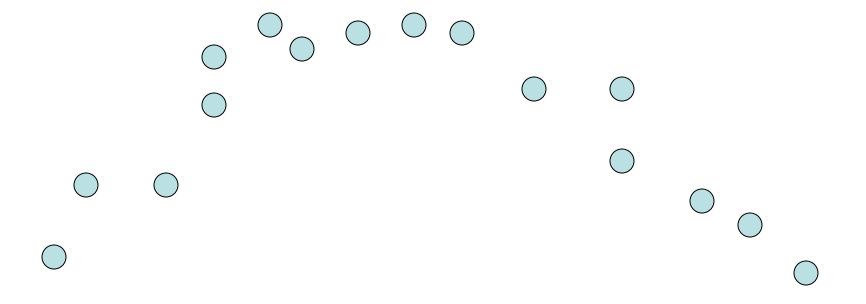
Opt[k, j] = t
```

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution

Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments



Penalty cost measure

• Opt[j] = min($E_{1,j}$, min_i(Opt[i] + $E_{i,j}$ + P))