CSE 421 Algorithms

Lecture 15 Closest Pair, Multiplication

Divide and Conquer Algorithms

- Mergesort, Quicksort
- · Strassen's Algorithm
- · Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)
- FF7
 - Polynomial Multiplication
 - Convolution

$$\label{eq:matter} \begin{split} & \textbf{Median: BFPRT Algorithm} \\ & \textbf{Select}(A, k)\{ & \textbf{x} = \textbf{Siprt}(A) \\ & \textbf{S}_1 = (y \text{ in A} \mid y < \textbf{x}); \ \textbf{S}_2 = \{y \text{ in A} \mid y > \textbf{x}\}; \ \textbf{S}_3 = \{y \text{ in A} \mid y = \textbf{x}\} \\ & \text{if } (|S_2| > k) \\ & \text{return Select}(S_2, k) \\ & \text{else if } (|S_2| + |S_3| > k) \\ & \text{return x} \\ & \text{else} \\ & \text{return Select}(S_1, k - |S_2| - |S_3|) \\ \} \\ & \textbf{S}_1 & \textbf{S}_3 & \textbf{S}_2 \\ \\ & \textbf{Bfprt}(A)\{ \\ & \textbf{n} = |A| \\ & \textbf{Split A into } n/5 \text{ sets of size 5} \\ & \textbf{M be the set of medians of these sets} \\ & \textbf{x} = \textbf{Select}(M, n/10) \ /* \textbf{x} \text{ is the median of M */} \end{split}$$

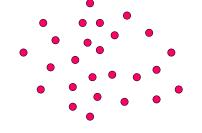
BFPRT Recurrence

 $T(n) \le T(3n/4) + T(n/5) + c n$

Prove that T(n) <= 20 c n

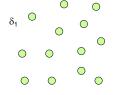
Closest Pair Problem

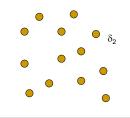
 Given a set of points find the pair of points p, q that minimizes dist(p, q)



Divide and conquer

 If we solve the problem on two subsets, does it help? (Separate by median x coordinate)





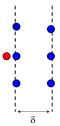
Packing Lemma

Suppose that the minimum distance between points is at least δ , what is the maximum number of points that can be packed in a ball of radius δ ?

Combining Solutions

- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

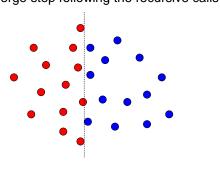
A packing lemma bounds the number of distances to check



Details

- Preprocessing: sort points by y
- · Merge step
 - Select points in boundary zone
 - For each point in the boundary
 - Find highest point on the other side that is at most δ above
 - Find lowest point on the other side that is at most δ below
 - Compare with the points in this interval (there are at most 6)

Identify the pairs of points that are compared in the merge step following the recursive calls



Algorithm run time

- · After preprocessing:
 - -T(n) = cn + 2 T(n/2)

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767 + 1242431098234099057329075097179898430928779579277597977

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868779409766717133476767930 X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to multiply two n digit numbers:

Recursive Algorithm (First attempt)

$$\begin{aligned} x &= x_1 \ 2^{n/2} + x_0 \\ y &= y_1 \ 2^{n/2} + y_0 \\ xy &= (x_1 \ 2^{n/2} + x_0) \ (y_1 \ 2^{n/2} + y_0) \\ &= x_1 y_1 \ 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0 \end{aligned}$$

Recurrence:

Run time:

Simple algebra

$$x = x_1 2^{n/2} + x_0$$

$$y = y_1 2^{n/2} + y_0$$

$$xy = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0$$

$$p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$

Karatsuba's Algorithm

Multiply n-digit integers x and y

Let
$$x = x_1 2^{n/2} + x_0$$
 and $y = y_1 2^{n/2} + y_0$
Recursively compute
$$a = x_1 y_1$$

$$b = x_0 y_0$$

$$p = (x_1 + x_0)(y_1 + y_0)$$
Return $a2^n + (p - a - b)2^{n/2} + b$

Recurrence: T(n) = 3T(n/2) + cn