CSE 421 Algorithms

Richard Anderson Lecture 14 Divide and Conquer

Announcements

- Review session, 3:30 pm. CSE 403.
- Midterm. Monday.

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)

 The bottom level wins
- Geometrically decreasing (x < 1)
 The top level wins
- Balanced (x = 1)
 - Equal contribution

$T(n) = aT(n/b) + n^{c}$

- Balanced: $a = b^c$ - T(n) = 4T(n/2) + n²
- Increasing: $a > b^c$ - T(n) = 9T(n/8) + n- $T(n) = 3T(n/4) + n^{1/2}$
- Decreasing: $a < b^c$ - T(n) = 5T(n/8) + n
 - $-T(n) = 7T(n/2) + n^3$

Divide and Conquer Algorithms

- Split into sub problems
- Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages

 Quicksort progress made at the split step
 Mergesort progress made at the combine step
- D&C Algorithms
- Strassen's Algorithm Matrix Multiplication
- Inversions
- Median
- Closest Pair
- Integer Multiplication

– FFT

How to multiply 2 x 2 matrices with 7 multiplications

Multiply 2 x 2 Matrices:	Where:
r s a b e g	$p_1 = (b - d)(f + h)$
t u = c d f h	$p_2 = (a + d)(e + h)$
	$p_3 = (a - c)(e + g)$
$r = p_1 + p_2 - p_4 + p_6$	p ₄ = (a + b)h
$s = p_4 + p_5$	$p_5 = a(g - h)$
$t = p_6 + p_7$	$p_6 = d(f - e)$
$u = p_2 - p_3 + p_5 - p_7$	$p_7 = (c + d)e$
	Corrected version from AHU 1974

Strassen's Algorithms

- Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 submatrices
- Use Strassen's trick to multiply 2 x 2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n) = 7 T(n/2) + cn^2$
- Solution is O(7^{log n})= O(n^{log 7}) which is about O(n^{2.807})

Inversion Problem

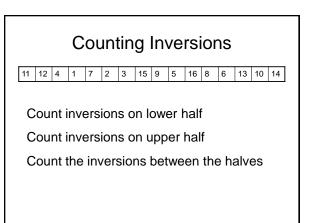
- Let $a_1, \ldots a_n$ be a permutation of $1 \ldots n$
- (a_i, a_j) is an inversion if i < j and a_i > a_j

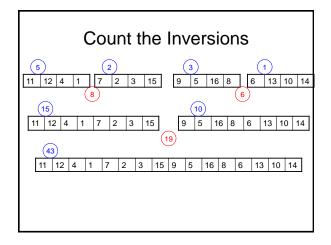
4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n²) time
 Can we do better?

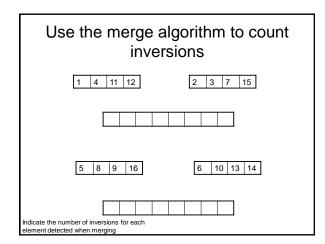
Application

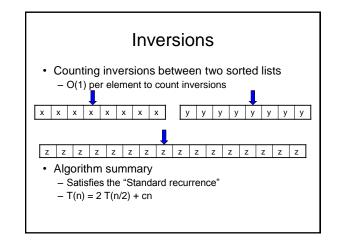
- Counting inversions can be use to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie





Problem – how do we count inversions between sub problems in O(n) time?	
 Solution – Count inversions while merging 	
1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16	
Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution	



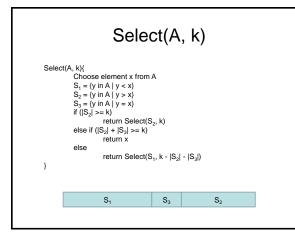


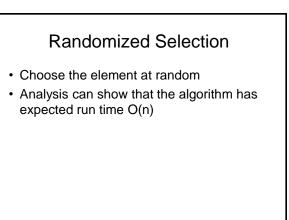
Computing the Median

- Given n numbers, find the number of rank n/2
- · One approach is sorting
 - $-\operatorname{Sort}$ the elements, and choose the middle one
 - Can you do better?

Problem generalization

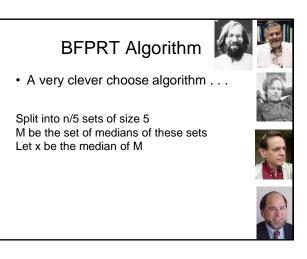
• *Selection*, given n numbers and an integer k, find the k-th largest





Deterministic Selection

• What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in O(n) time



BFPRT runtime

 $|S_1| < 3n/4, |S_2| < 3n/4$

Split into n/5 sets of size 5 M be the set of medians of these sets x be the median of M Construct S_1 and S_2 Recursive call in S_1 or S_2

BFPRT Recurrence

• T(n) <= T(3n/4) + T(n/5) + c n

Prove that T(n) <= 20 c n