CSE 421 Algorithms

Richard Anderson

Lecture 14

Divide and Conquer

Announcements

- Review session, 3:30 pm. CSE 403.
- Midterm. Monday.

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($\mathrm{x}<1$)
- The top level wins
- Balanced ($\mathrm{x}=1$)
- Equal contribution

$T(n)=a T(n / b)+n^{c}$

- Balanced: $\mathrm{a}=\mathrm{b}^{\mathrm{c}}$

$$
-T(n)=4 T(n / 2)+n^{2}
$$

- Increasing: $a>b^{c}$

$$
\begin{aligned}
& -T(n)=9 T(n / 8)+n \\
& -T(n)=3 T(n / 4)+n^{1 / 2}
\end{aligned}
$$

- Decreasing: $a<b^{c}$
$-T(n)=5 T(n / 8)+n$
$-T(n)=7 T(n / 2)+n^{3}$

Divide and Conquer Algorithms

- Split into sub problems
- Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages
- Quicksort - progress made at the split step
- Mergesort - progress made at the combine step
- D\&C Algorithms
- Strassen's Algorithm - Matrix Multiplication
- Inversions
- Median
- Closest Pair
- Integer Multiplication
- FFT

How to multiply 2×2 matrices with 7 multiplications

Multiply 2×2 Matrices:

$r=p_{1}+p_{2}-p_{4}+p_{6}$
$\mathrm{s}=\mathrm{p}_{4}+\mathrm{p}_{5}$
$\mathrm{t}=\mathrm{p}_{6}+\mathrm{p}_{7}$
$\mathrm{u}=\mathrm{p}_{2}-\mathrm{p}_{3}+\mathrm{p}_{5}-\mathrm{p}_{7}$

Where:

$$
\begin{aligned}
& p_{1}=(b-d)(f+h) \\
& p_{2}=(a+d)(e+h) \\
& p_{3}=(a-c)(e+g) \\
& p_{4}=(a+b) h \\
& p_{5}=a(g-h) \\
& p_{6}=d(f-e) \\
& p_{7}=(c+d) e
\end{aligned}
$$

Strassen's Algorithms

- Treat $\mathrm{n} \times \mathrm{n}$ matrices as 2×2 matrices of $\mathrm{n} / 2 \mathrm{x}$ n/2 submatrices
- Use Strassen's trick to multiply 2×2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n)=7 T(n / 2)+c n^{2}$
- Solution is $O\left(7^{\log n}\right)=O\left(n^{\log 7}\right)$ which is about $\mathrm{O}\left(\mathrm{n}^{2.807}\right)$

Inversion Problem

- Let $a_{1}, \ldots a_{n}$ be a permutation of $1 \ldots n$
- $\left(a_{i}, a_{j}\right)$ is an inversion if $i<j$ and $a_{i}>a_{j}$

$$
4,6,1,7,3,2,5
$$

- Problem: given a permutation, count the number of inversions
- This can be done easily in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- Can we do better?

Application

- Counting inversions can be use to measure how close ranked preferences are
- People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Counting Inversions

11	12	4	1	7	2	3	15	9	5	16	8	6	13	10	14

Count inversions on lower half
Count inversions on upper half
Count the inversions between the halves

Count the Inversions

Problem - how do we count inversions between sub problems in $\mathrm{O}(\mathrm{n})$ time?

- Solution - Count inversions while merging

1	2	3	4	7	11	12	15

5	6	8	9	10	13	14	16

\square

Standard merge algorithm - add to inversion count when an element is moved from the upper array to the solution

Use the merge algorithm to count inversions

1	4	11	12

2	3	7	15

5	8	9	16

6	10	13	14

Indicate the number of inversions for each element detected when merging

Inversions

- Counting inversions between two sorted lists
- O(1) per element to count inversions

- Algorithm summary
- Satisfies the "Standard recurrence"
$-T(n)=2 T(n / 2)+c n$

Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
- Sort the elements, and choose the middle one
- Can you do better?

Problem generalization

- Selection, given n numbers and an integer k , find the k -th largest

Select(A, k)

Select(A, k)
Choose element x from A
$S_{1}=\{y$ in $A \mid y<x\}$
$S_{2}=\{y$ in $A \mid y>x\}$
$\mathrm{S}_{3}=\{y$ in $A \mid y=x\}$
if ($\left|S_{2}\right|>=k$)
return Select $\left(\mathrm{S}_{2}, k\right)$
else if $\left(\left|S_{2}\right|+\left|S_{3}\right|>=k\right)$ return x
else

$$
\text { return Select }\left(\mathrm{S}_{1}, \mathrm{k}-\left|\mathrm{S}_{2}\right|-\left|\mathrm{S}_{3}\right|\right)
$$

Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time $O(n)$

Deterministic Selection

- What is the run time of select if we can guarantee that choose finds an x such that $\left|S_{1}\right|<3 n / 4$ and $\left|S_{2}\right|<3 n / 4$ in $O(n)$ time

BFPRT Algorithm

- A very clever choose algorithm . . .

Split into $\mathrm{n} / 5$ sets of size 5
M be the set of medians of these sets Let x be the median of M

BFPRT runtime

$\left|S_{1}\right|<3 n / 4,\left|S_{2}\right|<3 n / 4$

Split into $\mathrm{n} / 5$ sets of size 5 M be the set of medians of these sets
x be the median of M
Construct S_{1} and S_{2}
Recursive call in S_{1} or S_{2}

BFPRT Recurrence

- $T(n)<=T(3 n / 4)+T(n / 5)+c n$

