

## Recurrence Examples

- $T(n)=2 T(n / 2)+c n$
$-O(n \log n)$
- $T(n)=T(n / 2)+c n$
$-\mathrm{O}(\mathrm{n})$
- More useful facts:
$-\log _{k} n=\log _{2} n / \log _{2} k$
$-k^{\log n}=n^{\log k}$

$$
\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}
$$

## Recursive Matrix Multiplication



## Announcements

- Midterm
- Monday, Oct 31, in class, closed book
- Through section 5.2
- Midterm review
- Homework 5 available

Unrolling the recurrence


## Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:



## Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth


## What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ( $x>1$ )
- The bottom level wins
- Geometrically decreasing ( $x<1$ )
- The top level wins
- Balanced ( $x=1$ )
- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n)=n+5 T(n / 8)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}+9 \mathrm{~T}(\mathrm{n} / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $T(n)=n^{3}+7 T(n / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$


## Strassen's Algorithm

Multiply $2 \times 2$ Matrices:


## Where:

$$
\begin{aligned}
& p_{1}=(b+d)(f+g) \\
& p_{2}=(c+d) e \\
& p_{3}=a(g-h) \\
& p_{4}=d(f-e) \\
& p_{5}=(a-b) h \\
& p_{6}=(c-d)(e+g) \\
& p_{7}=(b-d)(f+h)
\end{aligned}
$$

## Recurrence for Strassen's Algorithms

- $T(n)=7 T(n / 2)+c n^{2}$
- What is the runtime?


## BFPRT Recurrence

- $T(n)<=T(3 n / 4)+T(n / 5)+20 n$

