CSE 421 Algorithms

Autumn 2016
Lecture 10
Minimum Spanning Trees

Edge costs are assumed to be non-negative

Dijkstra's Algorithm Implementation and Runtime

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))
$$

HEAP OPERATIONS
n Extract Mins
m Heap Updates

Shortest Paths

- Negative Cost Edges
- Dijkstra's algorithm assumes positive cost edges
- For some applications, negative cost edges make sense
- Shortest path not well defined if a graph has a negative cost cycle

Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).

Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

(a)
©
(a)
(f)

Dijkstra's Algorithm for Bottleneck Shortest Paths

$S=\{ \} ; \quad d[s]=$ negative infinity; $\quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \max (\mathrm{d}[\mathrm{v}], \mathrm{c}(\mathrm{v}, \mathrm{w})))
$$

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph

Greedy Algorithm 1 Prim's Algorithm

- Extend a tree by including the cheapest out going edge

Construct the MST with Prim's algorithm starting from vertex a

Label the edges in order of insertion

Greedy Algorithm 2 Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm

Label the edges in order of insertion

Greedy Algorithm 3 Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reversedelete algorithm

Label the edges in order of removal

Dijkstra's Algorithm for Minimum Spanning Trees

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v

$$
d[w]=\min (d[w], c(v, w))
$$

Minimum Spanning Tree

Undirected Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with edge
 weights

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect
 the graph

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V , and suppose $\mathrm{e}=$ (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
- Or equivalently, if e is not in T , then T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

