
10/9/2016

1

CSE 421
Algorithms

Richard Anderson

Autumn 2016

Lecture 6

Announcements

• Reading

– Start on Chapter 4

Stable Matching Results

• Averages of 5 runs

• Much better for M than W

• Why is it better for M?

• What is the growth of m-
rank and w-rank as a
function of n?

n m-rank w-rank

500 5.102 98.048

500 7.52 66.952

500 8.57 58.176

500 6.322 75.874

500 5.25 90.726

500 6.5528 77.9552

1000 6.796 146.936

1000 6.502 154.714

1000 7.14 133.538

1000 7.444 128.961

1000 7.364 137.852

1000 7.0492 140.4002

2000 7.826 257.7955

2000 7.505 263.781

2000 11.4245 175.1735

2000 7.1665 274.7615

2000 7.547 261.602

2000 8.2938 246.6227

Graph Theory

• G = (V, E)
– V: vertices, |V|= n
– E: edges, |E| = m

• Undirected graphs
– Edges sets of two vertices

{u, v}
• Directed graphs

– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops

• Path: v1, v2, …, vk, with
(vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

Last Lecture

• Bipartite Graphs : two-colorable graphs

• Breadth First Search algorithm for testing two-
colorability

– Two-colorable iff no odd length cycle

– BFS has cross edge iff graph has odd cycle

Graph Search

• Data structure for next vertex to visit
determines search order

10/9/2016

2

Graph search

Breadth First Search

 S = {s}

 while S is not empty

 u = Dequeue(S)

 if u is unvisited

 visit u

 foreach v in N(u)

 Enqueue(S, v)

Depth First Search

 S = {s}

 while S is not empty

 u = Pop(S)

 if u is unvisited

 visit u

 foreach v in N(u)

 Push(S, v)

Breadth First Search

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7 6 5 4

1

Depth First Search

• Each edge goes between
vertices on the same
branch

• No cross edges

1

2

5

6

12 7 4 3

8 9

10 11

Connected Components

• Undirected Graphs

Computing Connected Components in
O(n+m) time

• A search algorithm from a vertex v can find all
vertices in v’s component

• While there is an unvisited vertex v, search
from v to find a new component

Directed Graphs

• A Strongly Connected Component is a subset
of the vertices with paths between every pair
of vertices.

10/9/2016

3

Identify the Strongly Connected
Components

Strongly connected components can be
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence
constraints, find a linear order of the tasks

142 143

311

341

351 333

332

312 431

421

451

Find a topological order for the following
graph

E

F

D

A

C

B

K

J
G

H
I

L

If a graph has a cycle, there is no
topological sort

• Consider the first vertex
on the cycle in the
topological sort

• It must have an
incoming edge B

A

D

E

F

C

Lemma: If a graph is acyclic, it has a vertex
with in degree 0

• Proof:

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

10/9/2016

4

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

 Output vertex v

 Delete the vertex v and all out going edges

E

F

D

A

C

B

K

J
G

H
I

L

Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are
removed

• m edge removals at O(1) cost each

