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CSE 421 
Algorithms 

Richard Anderson 

Autumn 2016 

Lecture 6 

Announcements 

• Reading 

– Start on Chapter 4 

Stable Matching Results 

• Averages of 5 runs 

• Much better for M than W 

• Why is it better for M? 

 

 

• What is the growth of m-
rank and w-rank as a 
function of n? 

n m-rank w-rank 

500 5.102 98.048 

500 7.52 66.952 

500 8.57 58.176 

500 6.322 75.874 

500 5.25 90.726 

500 6.5528 77.9552 

1000 6.796 146.936 

1000 6.502 154.714 

1000 7.14 133.538 

1000 7.444 128.961 

1000 7.364 137.852 

1000 7.0492 140.4002 

2000 7.826 257.7955 

2000 7.505 263.781 

2000 11.4245 175.1735 

2000 7.1665 274.7615 

2000 7.547 261.602 

2000 8.2938 246.6227 

Graph Theory 

• G = (V, E) 
– V:  vertices,  |V|= n 
– E:  edges,  |E| = m  

• Undirected graphs 
– Edges sets of two vertices 

{u, v} 
• Directed graphs 

– Edges ordered pairs (u, v) 

• Many other flavors 
– Edge / vertices weights 
– Parallel edges 
– Self loops 

• Path:  v1, v2, …, vk, with     
(vi, vi+1) in E 
– Simple Path 
– Cycle 
– Simple Cycle 

• Neighborhood 
– N(v) 

• Distance 
• Connectivity 

– Undirected 
– Directed (strong connectivity) 

• Trees 
– Rooted 
– Unrooted 

 

Last Lecture 

• Bipartite Graphs : two-colorable graphs 

• Breadth First Search algorithm for testing two-
colorability 

– Two-colorable iff no odd length cycle 

– BFS has cross edge iff graph has odd cycle 

Graph Search 

• Data structure for next vertex to visit 
determines search order 
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Graph search 

Breadth First Search 

 S = {s} 

 while S is not empty 

  u = Dequeue(S) 

  if u is unvisited 

   visit u 

   foreach v in N(u) 

    Enqueue(S, v) 

       

Depth First Search 

 S = {s} 

 while S is not empty 

  u = Pop(S) 

  if u is unvisited 

   visit u 

   foreach v in N(u) 

    Push(S, v) 

      

   

Breadth First Search 

• All edges go between vertices on the same 
layer or adjacent layers 
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Depth First Search 

• Each edge goes between 
vertices on the same 
branch 

• No cross edges 
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Connected Components 

• Undirected Graphs 

Computing Connected Components in 
O(n+m) time 

• A search algorithm from a vertex v can find all 
vertices in v’s component 

• While there is an unvisited vertex v, search 
from v to find a new component 

 

Directed Graphs 

• A Strongly Connected Component is a subset 
of the vertices with paths between every pair 
of vertices. 
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Identify the Strongly Connected 
Components 

 

Strongly connected components can be 
found in O(n+m) time 

• But it’s tricky! 

• Simpler problem: given a vertex v, compute the 
vertices in v’s scc in O(n+m) time 

Topological Sort 

• Given a set of tasks with precedence 
constraints, find a linear order of the tasks 
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Find a topological order for the following 
graph 
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If a graph has a cycle, there is no 
topological sort 

• Consider the first vertex 
on the cycle in the 
topological sort 

• It must have an 
incoming edge B 
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Lemma: If a graph is acyclic, it has a vertex 
with in degree 0 

• Proof:   

– Pick a vertex v1, if it has in-degree 0 then done 

– If not, let (v2, v1) be an edge, if v2 has in-degree 0 
then done 

– If not, let (v3, v2) be an edge . . . 

– If this process continues for more than n steps, we 
have a repeated vertex, so we have a cycle 
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Topological Sort Algorithm 

While there exists a vertex v with in-degree 0 

 Output vertex v 

 Delete the vertex v and all out going edges 
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Details for O(n+m) implementation 

• Maintain a list of vertices of in-degree 0 

• Each vertex keeps track of its in-degree 

• Update in-degrees and list when edges are 
removed 

• m edge removals at O(1) cost each 

 


