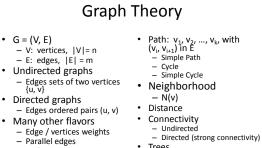


- Why is it better for M?
- What is the growth of mrank and w-rank as a function of n?

n	m-rank	w-rank
500	5.102	98.048
500	7.52	66.952
500	8.57	58.176
500	6.322	75.874
500	5.25	90.726
500	6.5528	77.9552
1000	6.796	146.936
1000	6.502	154.714
1000	7.14	133.538
1000	7.444	128.961
1000	7.364	137.852
1000	7.0492	140.4002
2000	7.826	257.7955
2000	7.505	263.781
2000	11.4245	175.1735
2000	7.1665	274.7615
2000	7.547	261.602
2000	8,2938	246.6227



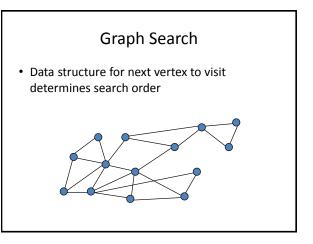
- Self loops

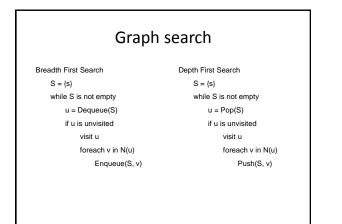
•

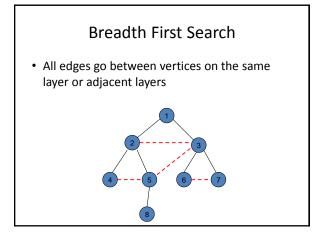
- Trees
 - RootedUnrooted

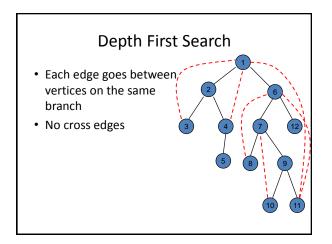
Last Lecture

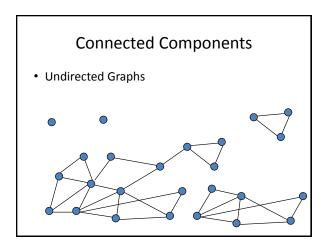
- Bipartite Graphs : two-colorable graphs
- · Breadth First Search algorithm for testing twocolorability
 - Two-colorable iff no odd length cycle
 - BFS has cross edge iff graph has odd cycle







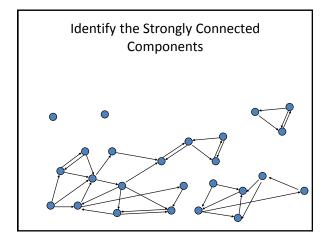




Computing Connected Components in O(n+m) time

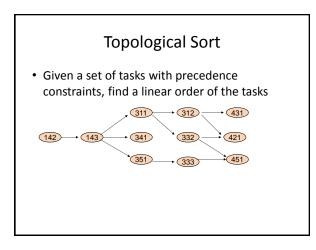
- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

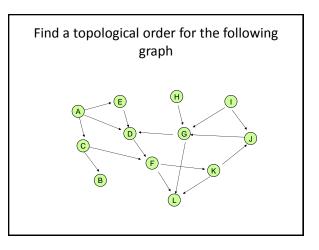


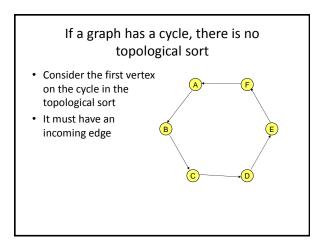


Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time



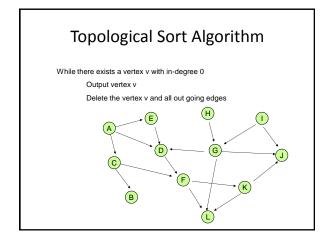




Lemma: If a graph is acyclic, it has a vertex with in degree 0

• Proof:

- Pick a vertex v_1 , if it has in-degree 0 then done
- If not, let $(\mathsf{v}_2,\mathsf{v}_1)$ be an edge, if v_2 has in-degree 0 then done
- If not, let (v₃, v₂) be an edge . . .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle



Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each