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Announcements 

• Reading 

– Chapter 2.1, 2.2 

– Chapter 3 (Mostly review) 

– Start on Chapter 4 

• Homework Guidelines 

– Prove that your algorithm works 
• A proof is a “convincing argument” 

– Give the run time for you algorithm 
• Justify that the algorithm satisfies the runtime bound 

– You may lose points for style 



What does it mean for an algorithm 

to be efficient? 

  

 



Definitions of efficiency 

• Fast in practice 

 

• Qualitatively better worst case 

performance than a brute force algorithm 



Polynomial time efficiency 

• An algorithm is efficient if it has a 

polynomial run time 

• Run time as a function of problem size 

– Run time: count number of instructions 

executed on an underlying model of 

computation 

– T(n): maximum run time for all problems of 

size at most n 

 

 



Polynomial Time 

• Algorithms with polynomial run time have 

the property that increasing the problem 

size by a constant factor increases the run 

time by at most a constant factor 

(depending on the algorithm) 

 



Why Polynomial Time? 

• Generally, polynomial time seems to 

capture the algorithms which are efficient 

in practice 

 

• The class of polynomial time algorithms 

has many good, mathematical properties 



Polynomial vs. Exponential 

Complexity 

• Suppose you have an algorithm which takes n! 

steps on a problem of size n 

• If the algorithm takes one second for a problem 

of size 10, estimate the run time for the following 

problems sizes: 

 
12             14              16               18             20 



Ignoring constant factors 

• Express run time as O(f(n)) 

• Emphasize algorithms with slower growth 

rates 

• Fundamental idea in the study of 

algorithms 

• Basis of Tarjan/Hopcroft Turing Award 



Why ignore constant factors? 

• Constant factors are arbitrary 

– Depend on the implementation 

– Depend on the details of the model 

 

• Determining the constant factors is tedious 

and provides little insight 



Why emphasize growth rates? 

• The algorithm with the lower growth rate 
will be faster for all but a finite number of 
cases 

• Performance is most important for larger 
problem size 

• As memory prices continue to fall, bigger 
problem sizes become feasible 

• Improving growth rate often requires new 
techniques 



Formalizing growth rates 

• T(n) is O(f(n))               [T : Z+   R+] 

– If n is sufficiently large, T(n) is bounded by a 

constant multiple of f(n) 

– Exist c, n0, such that for n > n0, T(n) < c f(n) 

 

• T(n) is O(f(n)) will be written as:              

T(n) = O(f(n)) 

– Be careful with this notation 



Prove 3n2 + 5n + 20 is O(n2) 

T(n) is O(f(n)) if there exist c, n0, such that for n > n0,         

T(n) < c f(n) 

Let c =  

 

Let n0 =  



Order the following functions in 

increasing order by their growth rate 

a) n log4n 

b) 2n2 + 10n 

c) 2n/100 

d) 1000n + log8 n 

e) n100 

f) 3n 

g) 1000 log10n 

h) n1/2 



Lower bounds 

• T(n) is W(f(n)) 

– T(n) is at least a constant multiple of f(n) 

– There exists an n0, and e > 0 such that       

T(n) > ef(n) for all n > n0 

• Warning: definitions of W vary 

 

• T(n) is Q(f(n)) if T(n) is O(f(n)) and         

T(n) is W(f(n)) 



Useful Theorems 

• If lim (f(n) / g(n)) = c for c > 0 then           

f(n) = Q(g(n)) 

 

• If f(n) is O(g(n)) and g(n) is O(h(n)) then     

f(n) is O(h(n)) 

 

• If f(n) is O(h(n)) and g(n) is O(h(n)) then 

f(n) + g(n) is O(h(n)) 



Ordering growth rates 

• For b > 1 and x > 0 

– logbn is O(nx) 

 

• For r > 1 and d > 0 

– nd is O(rn) 



Graph Theory 

• G = (V, E) 
– V – vertices 

– E – edges  

• Undirected graphs 
– Edges sets of two vertices {u, v} 

• Directed graphs 
– Edges ordered pairs (u, v) 

• Many other flavors 
– Edge / vertices weights 

– Parallel edges 

– Self loops 



Definitions 

• Path:  v1, v2, …, vk, with (vi, vi+1) in E 
– Simple Path 
– Cycle 
– Simple Cycle 

• Neighborhood 
– N(v) 

• Distance 
• Connectivity 

– Undirected 
– Directed (strong connectivity) 

• Trees 
– Rooted 
– Unrooted 



Graph search 

• Find a path from s to t 

S = {s} 

while S is not empty 

 u = Select(S) 

 visit u 

 foreach v in N(u) 

  if v is unvisited 

   Add(S, v) 

   Pred[v] = u 

  if (v = t) then path found 



Breadth first search 

• Explore vertices in layers 

– s in layer 1 

– Neighbors of s in layer 2 

– Neighbors of layer 2 in layer 3 . . . 

s 



Key observation 

• All edges go between vertices on the 

same layer or adjacent layers 
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