
CSE 421

Algorithms

Richard Anderson

Autumn 2016

Lecture 4

Announcements

• Reading

– Chapter 2.1, 2.2

– Chapter 3 (Mostly review)

– Start on Chapter 4

• Homework Guidelines

– Prove that your algorithm works
• A proof is a “convincing argument”

– Give the run time for you algorithm
• Justify that the algorithm satisfies the runtime bound

– You may lose points for style

What does it mean for an algorithm

to be efficient?

Definitions of efficiency

• Fast in practice

• Qualitatively better worst case

performance than a brute force algorithm

Polynomial time efficiency

• An algorithm is efficient if it has a

polynomial run time

• Run time as a function of problem size

– Run time: count number of instructions

executed on an underlying model of

computation

– T(n): maximum run time for all problems of

size at most n

Polynomial Time

• Algorithms with polynomial run time have

the property that increasing the problem

size by a constant factor increases the run

time by at most a constant factor

(depending on the algorithm)

Why Polynomial Time?

• Generally, polynomial time seems to

capture the algorithms which are efficient

in practice

• The class of polynomial time algorithms

has many good, mathematical properties

Polynomial vs. Exponential

Complexity

• Suppose you have an algorithm which takes n!

steps on a problem of size n

• If the algorithm takes one second for a problem

of size 10, estimate the run time for the following

problems sizes:

12 14 16 18 20

Ignoring constant factors

• Express run time as O(f(n))

• Emphasize algorithms with slower growth

rates

• Fundamental idea in the study of

algorithms

• Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

• Constant factors are arbitrary

– Depend on the implementation

– Depend on the details of the model

• Determining the constant factors is tedious

and provides little insight

Why emphasize growth rates?

• The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

• Performance is most important for larger
problem size

• As memory prices continue to fall, bigger
problem sizes become feasible

• Improving growth rate often requires new
techniques

Formalizing growth rates

• T(n) is O(f(n)) [T : Z+ R+]

– If n is sufficiently large, T(n) is bounded by a

constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:

T(n) = O(f(n))

– Be careful with this notation

Prove 3n2 + 5n + 20 is O(n2)

T(n) is O(f(n)) if there exist c, n0, such that for n > n0,

T(n) < c f(n)

Let c =

Let n0 =

Order the following functions in

increasing order by their growth rate

a) n log4n

b) 2n2 + 10n

c) 2n/100

d) 1000n + log8 n

e) n100

f) 3n

g) 1000 log10n

h) n1/2

Lower bounds

• T(n) is W(f(n))

– T(n) is at least a constant multiple of f(n)

– There exists an n0, and e > 0 such that

T(n) > ef(n) for all n > n0

• Warning: definitions of W vary

• T(n) is Q(f(n)) if T(n) is O(f(n)) and

T(n) is W(f(n))

Useful Theorems

• If lim (f(n) / g(n)) = c for c > 0 then

f(n) = Q(g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then

f(n) is O(h(n))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then

f(n) + g(n) is O(h(n))

Ordering growth rates

• For b > 1 and x > 0

– logbn is O(nx)

• For r > 1 and d > 0

– nd is O(rn)

Graph Theory

• G = (V, E)
– V – vertices

– E – edges

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights

– Parallel edges

– Self loops

Definitions

• Path: v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

Graph search

• Find a path from s to t

S = {s}

while S is not empty

 u = Select(S)

 visit u

 foreach v in N(u)

 if v is unvisited

 Add(S, v)

 Pred[v] = u

 if (v = t) then path found

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s

Key observation

• All edges go between vertices on the

same layer or adjacent layers

2

8

3

7 6 5 4

1

