CSE 421
Algorithms

Richard Anderson
Autumn 2016
Lecture 4



Announcements

* Reading
— Chapter 2.1, 2.2
— Chapter 3 (Mostly review)
— Start on Chapter 4

« Homework Guidelines
— Prove that your algorithm works
A proof is a “convincing argument”

— Give the run time for you algorithm
« Justify that the algorithm satisfies the runtime bound

— You may lose points for style



What does it mean for an algorithm
to be efficient?



Definitions of efficiency

* Fast in practice

« Qualitatively better worst case
performance than a brute force algorithm



Polynomial time efficiency

* An algorithm is efficient If it has a
polynomial run time

* Run time as a function of problem size

— Run time: count number of instructions
executed on an underlying model of
computation

— T(n): maximum run time for all problems of
Size at most n



Polynomial Time

 Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor
(depending on the algorithm)



Why Polynomial Time?

* Generally, polynomial time seems to
capture the algorithms which are efficient
INn practice

* The class of polynomial time algorithms
has many good, mathematical properties



Polynomial vs. Exponential
Complexity

« Suppose you have an algorithm which takes n!
steps on a problem of size n

* If the algorithm takes one second for a problem
of size 10, estimate the run time for the following
problems sizes:

12 14 16 18 20



lgnoring constant factors

Express run time as O(f(n))

Emphasize algorithms with slower growth
rates

Fundamental idea in the study of
algorithms

Basis of Tarjan/Hopcroft Turing Award



Why ignore constant factors?

« Constant factors are arbitrary
— Depend on the implementation
— Depend on the details of the model

* Determining the constant factors Is tedious
and provides little insight



Why emphasize growth rates?

The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

Performance Is most important for larger
problem size

As memory prices continue to fall, bigger
problem sizes become feasible

Improving growth rate often requires new
techniques



Formalizing growth rates

* T(n)is O(f(n)) IT:Z* 2 RY]
— If n Is sufficiently large, T(n) is bounded by a
constant multiple of f(n)

— EXist ¢, n,, such that for n > n,, T(n) < c f(n)

* T(n) is O(f(n)) will be written as:
T(n) = O(i(n))

— Be careful with this notation



Prove 3n¢ + 5n + 20 is O(n?)

Letc =

Let ng =

T(n) is O(f(n)) if there exist c, n,, such that for n > n,,
T(n) < cf(n)



Order the following functions In
Increasing order by their growth rate
a) nlog*n
b) 2n%+ 10n
C) 2n/100
d) 1000n + log® n
e) nlOO
f) 3n
g) 1000 log®n
h) n1/2



Lower bounds

* T(n)is Q(f(n))
— T(n) is at least a constant multiple of f(n)

— There exists an ny, and ¢ > 0 such that
T(n) > &f(n) for all n > n,

« Warning: definitions of Q vary

* T(n)is ©(f(n)) if T(n) is O(f(n)) and
T(n) 1s Q(f(n))



Useful Theorems

 If lim (f(n) / g(n)) = c¢ for ¢ > 0 then
f(n) = ©(g(n))

 If f(n) is O(g(n)) and g(n) is O(h(n)) then
f(n) 1Is O(h(n))

 If f(n)is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))



Ordering growth rates

* Forb>1and x>0
—logPn is O(nX)

e Forr>1andd>0
—n9is O(r")



Graph Theory

G = (V, E)
— V — vertices

— E — edges

Undirected graphs

— Edges sets of two vertices {u, v}
Directed graphs

— Edges ordered pairs (u, v)
Many other flavors

— Edge / vertices weights

— Parallel edges
— Self loops



Definitions

Path: v, v,, ..., v, with (v;, vi,;) INE
— Simple Path

— Cycle

— Simple Cycle
Neighborhood

— N(V)

Distance

Connectivity

— Undirected

— Directed (strong connectivity)
Trees

— Rooted
— Unrooted



Graph search

 Find apathfromstot

S ={s}
while S is not empty
u = Select(S)
visit u
foreach v in N(u)
if v is unvisited
Add(S, v)
Pred[v] = u
if (v =1t) then path found



Breadth first search

* Explore vertices In layers
—sinlayer 1
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3. . .



Key observation

» All edges go between vertices on the
same layer or adjacent layers




