CSE 421 Algorithms Richard Anderson Autumn 2016 Lecture 2 Autumn 2016 Chapter 1, Sections 2.1, 2.2 Evaluation of the section of t

Office Hours

- Richard Anderson
 - Monday, 2:30 pm 3:30 pm, CSE 582
 - Wednesday, 2:30 pm 3:30 pm, CSE 582
- Deepali Aneja
- Monday, 5:30 pm 6:30 pm, CSE 220 Max Horton
 - Monday, 4:30 pm 5:30 pm, CSE 220
 - Tuesday, 2:00 pm 3:00 pm, CSE 218
- · Ben Jones
 - Tuesday, 1:00 pm 2:00 pm, CSE 218
 - Friday, 2:30 pm 3:30 pm, CSE 220

Stable Matching: Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property (e.g., no instabilities) :

For all m', m", w', w"

If (m', w') ∈ M and (m", w") ∈ M then (m' prefers w' to w") or (w" prefers m" to m')

Idea for an Algorithm

m proposes to w

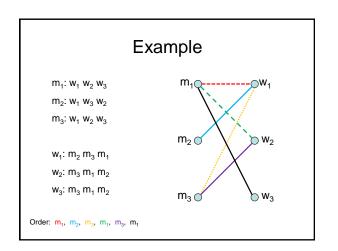
- If w is unmatched, w accepts
- If w is matched to m₂
 - If w prefers m to m_2 w accepts m, dumping m_2 If w prefers m_2 to m, w rejects m

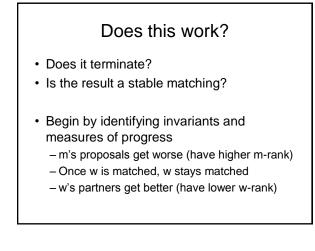
Unmatched m proposes to the highest w on its preference list that it has not already proposed to

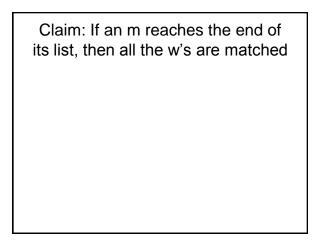
Algorithm

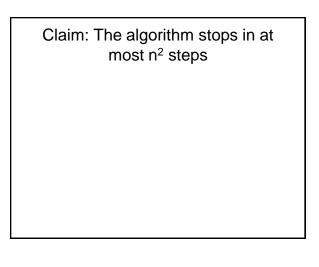
Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w)

else suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)



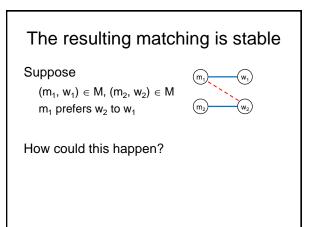






When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching



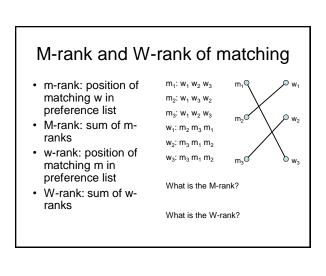
Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look Stable matchings are not necessarily fair (m_1) (w_1) $m_1: W_1 W_2 W_3$ $W_2 W_3 W_1$ m₂: (m_2) (W_2) $W_3 W_1 W_2$ m₃: (W_3) (m3) w₁: m₂ m₃ m₁ w₂: m₃ m₁ m₂ w₃: m₁ m₂ m₃ How many stable matchings can you find?

Algorithm under specified

- · Many different ways of picking m's to propose
- · Surprising result
 - All orderings of picking free m's give the same result
- · Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching



Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- · What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

 $\begin{array}{l} m_1 \!\!: w_8 \, w_3 \, w_1 \, w_5 \, w_9 \, w_2 \, w_4 \, w_6 \, w_7 \, w_{10} \\ m_2 \!\!: w_7 \, w_{10} \, w_1 \, w_9 \, w_3 \, w_4 \, w_8 \, w_2 \, w_5 \, w_6 \\ \cdots \end{array}$

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Best choices for one side may be bad for the other

Design a configuration for problem of size 4: M proposal algorithm: All m's get first choice, all w's get last choice W proposal algorithm: All w's get first choice, all m's get last choice	m ₁ : m ₂ : m ₃ : m ₄ : w ₁ : w ₂ : w ₃ :
	w ₃ :
	w ₄ :

But there is a stable second choice m₁: Design a configuration for problem of size 4: m₂: M proposal algorithm: m3: All m's get first choice, all w's get last choice m4: W proposal algorithm: All w's get first choice, all m's get last choice w₁: There is a stable matching w₂: where everyone gets their second choice w₃: w.:

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n² times w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose (m_2, w) is matched if w prefers m to m₂ unmatch (m_2, w) match (m, w)

O(1) time per iteration

- · Find free m
- · Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

