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Announcements 

• Homework 1, due Wednesday Oct 5 

–  in class, paper turn in 

–  pay attention to making explanations clear 

and understandable 

• Reading 

– Chapter 1,   Sections 2.1, 2.2 



Office Hours 

• Richard Anderson 
– Monday, 2:30 pm - 3:30 pm, CSE 582 

– Wednesday, 2:30 pm - 3:30 pm, CSE 582 

• Deepali Aneja 
– Monday, 5:30 pm - 6:30 pm, CSE 220 

• Max Horton 
– Monday, 4:30 pm – 5:30 pm, CSE 220 

– Tuesday, 2:00 pm – 3:00 pm, CSE 218 

• Ben Jones 
– Tuesday, 1:00 pm – 2:00 pm, CSE 218 

– Friday, 2:30 pm – 3:30 pm, CSE 220    



Stable Matching: Formal 

Problem 
• Input 

– Preference lists for m1, m2, …, mn 

– Preference lists for w1, w2, …, wn 

• Output 

– Perfect matching M satisfying stability 

property (e.g., no instabilities) : 

For all m’, m’’, w’, w’’ 

 If (m’, w’)  M and (m’’, w’’)  M then 

  (m’ prefers w’ to w’’) or (w’’ prefers m’’ to m’) 
  



Idea for an Algorithm 

m proposes to w 

If w is unmatched, w accepts 

If w is matched to m2 

If w prefers m to m2 w accepts m, dumping m2 

If w prefers m2 to m, w rejects m 

 

Unmatched m proposes to the highest w on 

its preference list that it has not already 

proposed to 
 



Algorithm 

Initially all m in M and w in W are free 

While there is a free m 

 w highest on m’s list that m has not proposed to 

 if w is free, then match (m, w) 

 else  

                     suppose (m2, w) is matched 

  if w prefers m to m2 

   unmatch (m2, w) 

   match (m, w) 



Example 

m1: w1 w2 w3 

m2: w1 w3 w2 

m3: w1 w2 w3 

 

w1: m2 m3 m1 

w2: m3 m1 m2 

w3: m3 m1 m2 

 

m1 

m2 w2 

w1 

m3 w3 

Order:  m1,  m2,  m3,  m1,  m3,  m1 



Does this work? 

• Does it terminate? 

• Is the result a stable matching? 

 

• Begin by identifying invariants and 

measures of progress 

– m’s proposals get worse (have higher m-rank) 

– Once w is matched, w stays matched 

– w’s partners get better (have lower w-rank) 



Claim: If an m reaches the end of 

its list, then all the w’s are matched 

 



Claim: The algorithm stops in at 

most n2 steps 



When the algorithms halts, every w 

is matched 

 

 

 

 

 

 

Hence, the algorithm finds a perfect 
matching 



The resulting matching is stable 

Suppose 

  (m1, w1)  M, (m2, w2)  M 

m1 prefers w2 to w1 

 

 

How could this happen? 

  

m1 w1 

m2 w2 



Result 

• Simple, O(n2) algorithm to compute a 

stable matching 

• Corollary 

– A stable matching always exists 

 



A closer look 

Stable matchings are not necessarily fair 

m1:    w1   w2   w3 

m2:    w2   w3   w1 

m3:    w3   w1   w2 

 

w1:   m2   m3   m1 

w2:   m3   m1   m2 

w3:   m1   m2   m3 

m1 

m2 

m3 

w1 

w2 

w3 

How many stable matchings can you find? 



Algorithm under specified 

• Many different ways of picking m’s to propose 

• Surprising result 

– All orderings of picking free m’s give the same result 

 

• Proving this type of result 

– Reordering argument 

– Prove algorithm is computing something mores 

specific 

• Show property of the solution – so it computes a specific 

stable matching 



M-rank and W-rank of matching  

• m-rank: position of 
matching w in 
preference list 

• M-rank: sum of m-
ranks 

• w-rank: position of 
matching m in 
preference list 

• W-rank: sum of w-
ranks 

m1: w1 w2 w3 

m2: w1 w3 w2 

m3: w1 w2 w3 

w1: m2 m3 m1 

w2: m3 m1 m2 

w3: m3 m1 m2 

 

m1 w1 

m2 w2 

m3 w3 

What is the M-rank? 

 

What is the W-rank? 



Suppose there are n m’s, and n w’s 

• What is the minimum possible M-rank? 

 

• What is the maximum possible M-rank? 

 

• Suppose each m is matched with a 

random w,  what is the expected M-rank? 



Random Preferences 

Suppose that the preferences are completely 

random 

If there are n m’s and n w’s, what is the expected  

value of the M-rank and the W-rank when the  

proposal algorithm computes a stable matching? 

m1: w8 w3 w1 w5 w9 w2 w4 w6 w7 w10 

m2: w7 w10 w1 w9 w3 w4 w8 w2 w5 w6 

… 

w1: m1 m4 m9 m5 m10 m3 m2 m6 m8 m7 

w2: m5 m8 m1 m3 m2 m7 m9 m10 m4 m6 

… 



Best choices for one side may be 

bad for the other 

Design a configuration for 

problem of size 4: 

M proposal algorithm: 

All m’s get first choice, all w’s 

get last choice 

W proposal algorithm: 

All w’s get first choice, all m’s 

get last choice 

m1: 

 

m2: 

 

m3: 

 

m4: 

 

 

w1: 

 

w2: 

 

w3: 

 

w4: 

 



But there is a stable second choice 

Design a configuration for 

problem of size 4: 

M proposal algorithm: 

All m’s get first choice, all w’s 

get last choice 

W proposal algorithm: 

All w’s get first choice, all m’s 

get last choice 

There is a stable matching 

where everyone gets their 

second choice 

m1: 

 

m2: 

 

m3: 

 

m4: 

 

 

w1: 

 

w2: 

 

w3: 

 

w4: 

 



What is the run time of the Stable 

Matching Algorithm? 

Initially all m in M and w in W are free 

While there is a free m 

 w highest on m’s list that m has not proposed to 

 if w is free, then match (m, w) 

 else  

                     suppose (m2, w) is matched 

  if w prefers m to m2 

   unmatch (m2, w) 

   match (m, w) 

Executed at most n2 times 



O(1) time per iteration 

• Find free m 

• Find next available w 

• If w is matched, determine m2 

• Test if w prefer m to m2 

• Update matching 

 

 

 

 



What does it mean for an algorithm 

to be efficient? 

  

 

 



Key ideas 

• Formalizing real world problem 
– Model: graph and preference lists 

– Mechanism: stability condition 

• Specification of algorithm with a natural 
operation 
– Proposal 

• Establishing termination of process through 
invariants and progress measure 

• Under specification of algorithm 

• Establishing uniqueness of solution 

 


