CSE 421 Algorithms

Richard Anderson Autumn 2016 Lecture 1

CSE 421 Course Introduction

- CSE 421, Introduction to Algorithms
 - MWF, 1:30-2:20 pm
- MGH 241
- Instructor
 - Richard Anderson, <u>anderson@cs.washington.edu</u>
 Office hours:
 - CSE 582
 - Office hours: Monday 2:30-3:30, Wednesday 2:30-3:30
- Teaching Assistants
 - Deepali Aneja
 - Maxwell Horton
 Benjamin Jones

Announcements

- It's on the web.
- Homework due Wednesdays
 - HW 1, Due October 5, 2015
- You should be on the course mailing list
 But it will probably go to your uw.edu account

Algorithm Design Jon Kleinberg, Eva Tardos Read Chapters 1 & 2 Expected coverage: Chapter 1 through 7 Book available at: UW Bookstore (\$163.50) Ebay (\$25.30) Amazon (\$19.79 and up) Kindle (\$104.99) PDF

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Monday, October 31 (probably)
 - Final, Monday, December 12, 2:30-4:20 pm
- Approximate grade weighting
- HW: 50, MT: 15, Final: 35
- Course web
- Slides, Handouts

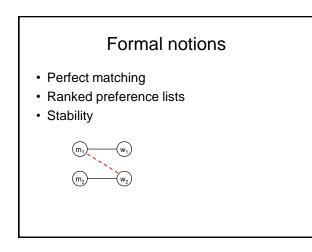
All of Computer Science is the Study of Algorithms

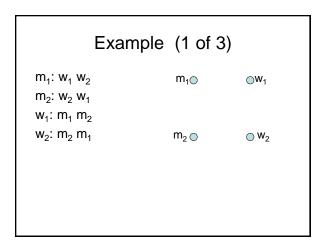
How to study algorithms

- Zoology
- Mine is faster than yours is
- · Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem: Stable Matching

- · Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.





	Example	(2 of 3)	
m ₁ : w ₁ w ₂ m ₂ : w ₁ w ₂		m₁⊙	⊖w ₁
w ₁ : m ₁ m ₂ w ₂ : m ₁ m ₂		m ₂ _	○ W ₂

	Example	(3 of 3)	
m ₁ : w ₁ w ₂ m ₂ : w ₂ w ₁ w ₁ : m ₂ m ₁		m₁⊙	○ W ₁
w ₁ . m ₂ m ₁ w ₂ : m ₁ m ₂		m_2 \bigcirc	⊖ W ₂

Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for $w_1, w_2, ..., w_n$
- Output
 - Perfect matching M satisfying stability property:

If (m', w') ∈ M and (m'', w'') ∈ M then (m' prefers w' to w'') or (w'' prefers m'' to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts If w is matched to m_2 If w prefers m to m_2 w accepts m, dumping m_2 If w prefers m_2 to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

	Example	
m ₁ : w ₁ w ₂ w ₃	m ₁	○ ₩ ₁
m ₂ : w ₁ w ₃ w ₂		
m ₃ : w ₁ w ₂ w ₃		
	m ₂	\bigcirc W ₂
$w_1: m_2 m_3 m_1$		
w ₂ : m ₃ m ₁ m ₂		
w ₃ : m ₃ m ₁ m ₂	m ₃ ()	\bigcirc W ₃

Does this work?

- · Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n^2 steps

When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $\begin{array}{l} (m_1,\,w_1)\,\in\,M,\,(m_2,\,w_2)\,\in\,M\\ m_1 \text{ prefers }w_2 \text{ to }w_1 \end{array}$

How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 A stable matching always exists