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NAME:

Instructions:

• Closed book, closed notes, no calculators

• Time limit: 50 minutes

• Answer the problems on the exam paper.

• If you need extra space use the back of a page

• Problems are not of equal difficulty, if you get stuck on
a problem, move on.

• You may write in either English or Chinese.
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Problem 1 (10 points):

Consider the stable matching problem.

a) Show that it is possible to have a last-choice match: There exists an instance of the problem
with a stable matching M that has m matched with w, where w is m’s last choice, and m is
w’s last choice.

Answer: An example of a problem instance is a 2× 2 example with:

m1 : w1, w2 w1 : m1,m2

m2 : w1, w2 w2 : m1,m2

Since m1 and w1 are each other’s first choice, they are matched, leaving m2 and w2 to be
matched.

Another example is the trivial example, with just m and w. In this case, m and w are
matched, and are their last choices (as well as their first choices).

b) Is it possible for a stable matching to have two last-choice matches: could a stable matching
M have m1 matched with w1 where m1 is w1’s last choice and w1 is m1’s last choice, and
m2 matched with w2 where m2 is w2’s last choice and w2 is m2’s last choice? Justify your
answer.

Answer: No. If there are two last choice matches (m1, w1) and (m2, w2), then (m1, w2) is
an instability, since m1 preferes w2 to w1 and w2 prefers m1 to m2.

Problem 2 (10 points):

Show that
log n∑
k=0

4k

is O(n2).
Answer:

j∑
k=0

xk =
xj+1 − 1

x− 1
,

so
log n∑
k=0

4k =
4log n+1 − 1

4− 1
=

4n2 − 1
3

which is O(n2).



Problem 3 (10 points):

Let G = (V,E) be an undirected graph.

a) True or false: If G is a tree, then G is bipartite. Justify your answer.

True. If we label the vertices based upon their distance from the root, we observe that all
edges go between even vertices and odd vertices.

b) True or false: If G is not bipartite, then the shortest cycle in G has odd length. Justify your
answer.

False. A counter example is a graph made up of a cycle of length 4 connected to a cycle of
length 5.
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Problem 4 (10 points):

Consider the following undirected graph G.
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a) Use the Edge Inclusion Lemma to argue that the edge (a, b) is in every Minimum Spanning
Tree of G.

Answer: (a, b) is the cheapest cost edge between {a, c, d, f, h} and {b, e, i, j, g}.

b) Use the Edge Exclusion Lemma to argue that the edge (a, i) is never in a Minimum Spanning
Tree of G.

Answer: (a, i) is the most expensive edge on the cycle {a, i, j, g, e, b}.



Problem 5 (10 points):

The knapsack problem is: Given a collection of items I = {i1, . . . , in} and an integer K where each
item ij has a weight wj and a value vj find a subset of the items which has weight at most K and
maximizes the total value in the set. More formally, we want to find a subset S ⊆ I such that∑

ik∈S wk ≤ K and
∑

ik∈S vk is as large as possible.
Suppose that the items are sorted in decreasing order of value, so that vi ≥ vi+1. A simple greedy
algorithm for the problem is:

CurrWeight := 0;
Sack := ∅;
for j := 1 to n

if CurrWeight + wj ≤ K then
Sack := Sack ∪ {ij}
CurrWeight := CurrWeight + wj

a) Show that the greedy algorithm does not necessarily find the maximum value collection of
items that can be placed in the knapsack.

Answer: The following counter example shows that the greedy algorithm does not find the
optimal soultion. Let K = 2 and suppose there are three jobs {i1, i2, i3} with v1 = 3, w1 = 2,
v2 = 2, w2 = 1, and v3 = 2, w3 = 1. The greedy algorithm selects i1, while the optimal
solution is i2 and i3.

b) Prove that if all weights are the same, then the greedy algorithm finds the maximum value
set. (For convenience, you may assume that each item has weight 1).

Proof: If there are fewer than K items, then the greedy algorithm selects all items, so
assume there are at least K items. The greedy algorithm constructs the solution {i1, . . . , iK}.
Let Opt = {ij1 , . . . , ijK} (where jr < jr+1). We must have r ≤ jr, so vr ≤ vjr for all r, so the
value of the set constructed by the greedy algorithm is no more the the optimal.



Problem 6 (10 points):

Give solutions to the following recurrences. Justify your answers.

a)

T (n) =

{
2T (n

3 ) + n if n > 1
1 if n ≤ 1

Answer: Unrolling the recurrence, we get:

T (n) = 2T

(
n

3

)
+ n = 4T

(
n

9

)
+

2n

3
+ n = 8T

(
n

27

)
+

4n

9
+

2n

3
+ n,

which gives us:

T (n) =
log3 n∑
i=0

(
2
3

)i

n ≤ 3n,

so the solution is O(n).

b)

T (n) =

{
8T (n

2 ) + n3 if n > 1
0 if n ≤ 1

Answer: Unrolling the recurrence, we get:

T (n) = 8T

(
n

2

)
+ n3 = 64T

(
n

4

)
+ n3 + n3 = 512T

(
n

8

)
+ n3 + n3 + n3.

We observe that each level of the recurrence yields the n3, and the depth of the recurrence is log 2n,
so the answer is O(n3 log n).



Problem 7 (10 points):

A k-wise merge takes as input k sorted arrays, and constructs a single sorted array containing all
of the elements of the input arrays.

a) Describe an efficient divide and conquer algorithm MultiMerge(k, A1, . . . , Ak) which computes
a k-wise merge of its input arrays.

Answer: We give a recursive algorithm, which makes use of a routine Merge(A1, A2) which
merges a pair of sorted arrays, and returns the result. We assume that k is a power of two,
and that k ≥ 2.

MultiMerge(k, A1, . . . , Ak)
if k = 2

return Merge(A1, A2);
else

B1 := MultiMerge(k
2 , A1, . . . , A k

2
);

B1 := MultiMerge(k
2 , A k

2
+1, . . . , Ak);

return Merge(B1, B2);

b) What is the run time of your algorithm with input of k arrays of length n. Justify your
answer.

The run time of the algorithm is O(kn log k). One way to see this is to write the run time as a
recurrence. Let cn be a bound on the cost of merging two arrays of length n. The recurrence for
the run time is T (k) = 2T

(
k
2

)
+ ckn, so the solution is ckn log k.


