
CSE 421
Introduction to Algorithms

The Network Flow Problem

1

How much stuff can flow from s to t?

The Network Flow Problem

5

6
7

4

3
4

1
5

3

7

6 4
s

a

b

c

x

y

z

t

2

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Soviet Rail Network, 1955

3

Net Flow: Formal Definition

Given:
A digraph G = (V,E)
Two vertices s,t in V

(s = source, t = sink)
A capacity c(u,v) ≥ 0

for each (u,v) ∈ E
(and c(u,v) = 0 for all non-
edges (u,v))

Find:
A flow function f: V x V → R s.t.,
for all u,v:

–  f(u,v) ≤ c(u,v) [Capacity Constraint]
–  f(u,v) = -f(v,u) [Skew Symmetry]
–  if u ≠ s,t, f(u,V) = 0 [Flow Conservation]

Maximizing total flow | f | = f(s,V)

∑ ∑∈ ∈= Xx Yy yxfYXf),(),(
Notation:

(technically, not quite the same
definition as in the book…)

4

f(s,u) = f(u,t) = 2
f(u,s) = f(t,u) = -2 (Why?)

f(s,t) = -f(t,s) = 0 (In every flow function for this G. Why?)

Example: A Flow Function

s u t 2/2 2/3

022 =+−=+=∑= ∈)t,u(f)s,u(f)v,u(f)V,u(f Vv

“flow”/“capacity”, not 0.66...

5

Not shown: f(u,v) if ≤ 0
Note: max flow ≥ 4 since f is a flow, |f | = 4

Example: A Flow Function

4/5

6
7

3/4

1/3
4

1
5

3/3

7

1/6 1/4
s

a

b

c

x

y

z

t

6

Max Flow via
a Greedy Alg?

While there is an
s → t path in G

Pick such a path, p
Find cp, the min capacity

of any edge in p
Subtract cp from all

capacities on p
Delete edges of

capacity 0

s
1 a

t

b

2

1
3

2

s
1 a

t

b

2
3

1

s
1 a

t

b

1
2

s
a

t

b

2

7

Max Flow via a Greedy Alg?

This does NOT always find a max flow:
If you pick s → b → a → t first,

Flow stuck at 2, but 3 possible (above).

s
1 a

t

b

2

1
3

2
s

1 a
t

b 1
1

8

A Brief History of Flow
Year Discoverer(s) Bound
1 1951 Dantzig O(n2mC)
2 1955 Ford & Fulkerson O(nmC)
3 1970 Dinitz; Edmonds & Karp O(nm2)
4 1970 Dinitz O(n2m)
5 1972 Edmonds & Karp; Dinitz O(m2 log C)
6 1973 Dinitz;Gabow O(nm log C)
7 1974 Karzanov O(n3)
8 1977 Cherkassky O(n2 sqrt(m))
9 1980 Galil & Naamad O(nm log2 n)
10 1983 Sleator & Tarjan O(nm log n)
11 1986 Goldberg &Tarjan O(nm log (n2/m))
12 1987 Ahuja & Orlin O(nm + n2 log C)
13 1987 Ahuja et al. O(nm log(n sqrt(log C)/(m+2))
14 1989 Cheriyan & Hagerup E(nm + n2 log2 n)
15 1990 Cheriyan et al. O(n3/log n)
16 1990 Alon O(nm + n8/3 log n)
17 1992 King et al. O(nm + n2+ε)
18 1993 Phillips & Westbrook O(nm(logm/n n + log2+ε n)
19 1994 King et al. O(nm(logm/(n log n) n)
20  1997 Goldberg & Rao O(m3/2 log(n2/m) log C) ; O(n2/3 m log(n2/m) logC)
… … … …

n = # of vertices
m= # of edges
C = Max capacity

Source: Goldberg & Rao,
FOCS ‘97

9

2

1

1 s

a

b

t

1

2

2

Greed Revisited

2/2

1

2/3 s

a

b

t

1

2/2

2

1

1 s

a

b

t

1

2

2

2/2

1/1

1/3 s

a

b

t

1/1

1+1/2

10

Residual Capacity

The residual capacity (w.r.t. f) of (u,v) is
 cf (u,v) = c(u,v) – f (u,v)
E.g.:
 cf (s,b) = 7;
 cf (a,x) = 1;
 cf (x,a) = 3;
 cf (x,t) = 0 (a saturated edge)

4/5

6
7

3/4

1/3
4

1
5

3/3

7

1/6 1/4
s

a

b

c

x

y

z

t

11

Residual Networks
& Augmenting Paths

The residual network (w.r.t. f) is the
graph Gf = (V,Ef), where

 Ef = { (u,v) | cf (u,v) > 0 }

An augmenting path (w.r.t. f) is a simple
s → t path in Gf

12

A Residual Network

4/5

6
7

3/4

1/3
4

1
5

3/3

7

1/6 1/4
s

a

b

c

x

y

z

t

4

3

1

1

1

6
7

1

2
4

1

5

3

7

5 3
s

a

b

c

x

y

z

t
1

residual network: the graph
Gf = (V,Ef), where
Ef = { (u,v) | cf(u,v) > 0 }

13

An Augmenting Path

4/5

6
7

3/4

1/3
4

1
5

3/3

7

1/6 1/4
s

a

b

c

x

y

z

t

4

3

1

1

1

6
7

1

2
4

1

5

3

7

5 3
s

a

b

c

x

y

z

t
1

augmenting path:
a simple s → t path in Gf

14

Lemma 1

If f admits an augmenting path p, then f is
not maximal.

Proof: “obvious” -- augment along p by cp,

the min residual capacity of p’s edges.

15

Augmenting A Flow

4/5

6
7

3/4

1/3
4

1
5

3/3

7

1/6 1/4
s

a

b

c

x

y

z

t

4

3

1

1

1

6
7

1

2
4

1

5

3

7

5 3
s

a

b

c

x

y

z

t
1

4/5

1/6
7

3/4

1/3
4

1
1/5

3/3

1/7

1/6 4
s

a

b

c

x

y

z

t

16

Augmenting A Flow

5/5

6
7

3/4

2/3
4

1
5

3/3

7

2/6 2/4
s

a

b

c

x

y

z

t

5

3

2

2

6
7

1

1
4

1

5

3

7

4 2
s

a

b

c

x

y

z

t
2

5/5

1/6
7

3/4

2/3
4

1
1/5

3/3

1/7

1+1/6

1/4
s

a

b

c

x

y

z

t

new green,
same blue;

what is result?

17

? ?

If f is a flow & p an augmenting path of capacity cp,
then f ’ is also a valid flow, where

Proof:

a)  Flow conservation – easy
b)  Skew symmetry – easy
c)  Capacity constraints – pretty easy; next slides

Lemma 1’:
Augmented Flows are Flows

!
"

!
#

$

−

+

=

otherwise),,(

path in),(if ,),(

path in),(if ,),(

),('

vuf
puvcvuf
pvucvuf

vuf p

p

18

f a flow & p an aug path of cap cp, then f ’ also a valid flow.
Proof (Capacity constraints):

 (u,v), (v,u) not on path: no change
 (u,v) on path:

f ’(u,v) = f(u,v) + cp
 ≤ f(u,v) + cf(u,v)

 = f(u,v) + c(u,v) - f(u,v)
 = c(u,v)

Lma 1’: Augmented
Flows are Flows !

"

!
#

$

−

+

=

otherwise),,(

path in),(if ,),(

path in),(if ,),(

),('

vuf
puvcvuf
pvucvuf

vuf p

p

f ’ (v,u) = f(v,u) - cp
 < f(v,u)
 ≤ c(v,u) QED

Residual Capacity:
 0 < cp ≤ cf(u,v) =
 c(u,v) - f(u,v)
Cap Constraints:
 -c(v,u) ≤ f(u,v) ≤ c(u,v)

19

Let (u,v) be any edge in
augmenting path. Note
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0

Case 1: f(u,v) ≥ 0:

Add forward flow

Lemma 1’ Example—Case 1

cp
u v

v’ u’

Gf

cp cp

f(u,v)/c(u,v)
u v

v’ u’

Gbefore

f(u,v)+cp/c(u,v)
u v

v’ u’

Gafter

20

Let (u,v) be any edge in
augmenting path. Note
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0

Case 2: f(u,v) ≤ -cp:
f(v,u) = -f(u,v) ≥ cp

Cancel/redirect

reverse flow

Lemma 1’ Example—Case 2

cp
u v

v’ u’

Gf

cp cp

f(v,u)/c(v,u)
u v

v’ u’

Gbefore

f(v,u)-cp/c(v,u)
u v

v’ u’

Gafter

21

Let (u,v) be any edge in
augmenting path. Note
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0

Case 3: -cp < f(u,v) < 0:

???

[E.g., cp = 8, f(u,v) = -5]

Lemma 1’ Example—Case 3

cp
u v

v’ u’

Gf

cp cp

u v
v’ u’

Gbefore

u v
v’ u’

Gafter

22

Let (u,v) be any edge in
augmenting path. Note
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0

Case 3: -cp < f(u,v) < 0
 cp > f(v,u) > 0:

Both:
cancel/redirect
reverse flow

and
 add forward flow

Lemma 1’ Example—Case 3

cp
u v

v’ u’

Gf

cp cp

f(v,u)/c(v,u)
u v

v’ u’

Gbefore

cp-f(v,u) /c(u,v)

0/c(u,v)

0/c(v,u)
u v

v’ u’

Gafter

23

Ford-Fulkerson Method

While Gf has an augmenting path,
augment

Questions:

» Does it halt?
» Does it find a maximum flow?
» How fast?

24

Cuts

A partition S,T of V is a cut if s ∈ S, t ∈ T.
Capacity of cut S,T is ∑

∈
∈

=

Tv
Su

vucTSc),(),(

5

6
7

4

3
4

1
5

3

7

6 4
s

a

b

c

x

y

z

t

{s}
c = 18

{t}
c=16 {s,b,c}

c = 15

5

6

7
3

s

a

b

c

x

y

z

t

{s,x}
c = 21

sum of caps
of edges

from S to T

25

Lemma 2

For any flow f and any cut S,T,
the net flow across the cut equals the total
flow, i.e., | f | = f(S,T), and
the net flow across the cut cannot exceed the
capacity of the cut, i.e. f(S,T) ≤ c(S,T)

Corollary:
Max flow ≤ Min cut

1 s

t

1
1

1
1

Cut Cap = 3
Net Flow = 1

Cut Cap = 2
Net Flow = 1

26

Lemma 2

For any flow f and any cut S,T,
net flow across cut = total flow ≤ cut capacity

Proof:
Track a flow unit. Starts at s, ends at t.
crosses cut an odd # of times; net = 1.
Last crossing uses a
forward edge totaled
in C(S,T)

1 s

t

1
1

1
1

Cut Cap = 3
Net Flow = 1

Cut Cap = 2
Net Flow = 1

27

this pf is very hand-wavy
–FIX

eg, unclear every flow
can be decomposed into
unit paths, nor why that
adds up to total flow
result…

Max Flow / Min Cut Theorem

For any flow f, the following are equivalent
 (1) | f | = c(S,T) for some cut S,T (a min cut)

 (2) f is a maximum flow
 (3) f admits no augmenting path

Proof:
 (1) ⇒ (2): corollary to lemma 2
 (2) ⇒ (3): contrapositive of lemma 1

28

(3) ⇒ (1)
(no aug) ⇒ (cut)

S = { u | ∃ an augmenting path wrt f from s to u }
T = V - S; s ∈ S, t ∈ T
For any (u,v) in S × T, ∃ an augmenting path

from s to u, but not to v.
∴ (u,v) has 0 residual capacity:

 (u,v) ∈ E ⇒ saturated f(u,v) = c(u,v)
 (v,u) ∈ E ⇒ no flow f(u,v) = -f(v,u) = 0

This is true for every edge crossing the cut, i.e.

s t

S T

u v

=== ∑ ∑∈ ∈Su Tv vufTSff),(),(||
),(),(),(),(,,),(,, TScvucvuf EvuTvSuEvuTvSu ==∑∑ ∈∈∈∈∈∈

Id
ea

: w
he

re
’s

 th
e

bo
ttl

en
ec

k

29

Corollaries & Facts

If Ford-Fulkerson terminates, then it’s
found a max flow.
It will terminate if c(e) integer or rational
(but may not if they’re irrational).

However, may take exponential time,
even with integer capacities:

s
c a

t

b

c

c
1

c

c = 1099, say

30

How to Make it Faster

Many possibilities. Three important ones:
Edmonds-Karp ‘70; Dinitz ’70 (below)

1st “strongly” poly time alg. (next) T = O(nm2)
“Scaling” [Edmonds-Karp, ‘72; Dinitz ’72]

do largest edges first; see text.
if C = max capacity, T = O(m2log C)

Preflow-Push [Goldberg, Tarjan ‘86]
see text T = O(n3)

31

Edmonds-Karp-Dinitz ‘70 Algorithm

Use a shortest augmenting path
(via Breadth First Search in residual graph)

Time: O(n m2)

32

BFS/Shortest Path Lemmas

Distance from s is never reduced by:
• Deleting an edge

proof: no new (hence no shorter) path created
• Adding a back-edge (i.e., an edge (u,v),

provided v is nearer than u)
proof: BFS is unchanged, since v visited before
(u,v) examined

s

v

u

a back edge

33

Lemma 3

Let f be a flow, Gf the residual graph, and
p a shortest augmenting path. Then no
vertex is closer to s in the new residual
graph Gf+p after augmentation along p.

Proof: Augmentation only deletes edges,
adds back edges

34

Augmentation vs BFS

t

v

u

x

s Gf

t

v

u

x

s Gf ’ G

t

v

u

x

s

5/9

3/10 0/5

3/3

2/5

2/-

6/-

35

Theorem 2

The Edmonds-Karp-Dinitiz Algorithm
performs O(mn) flow augmentations

Proof:

 {u,v} is critical on augmenting path p if it’s
closest to s having min residual capacity.
 Won’t be critical again until farther from s.
 So each edge critical at most n times.

36

Augmentation vs BFS Level

G

t

v

u

x

s Gf

t

v

u

x

s Gf ’

t

v

u

x

s

5/9

3/10 0/5

3/3

2/5

2/-

6/-

t

v

u

s

3

Glater

≥ k+1

≥ k

0 . . .

B
FS

Le

ve
l

k -1

k

0 . . .

B
FS

Le

ve
l

4
5

7
8

3
0

2

3

1
8

4
11

0
3

5

0

37

Corollary

Edmonds-Karp-Dinitz runs in O(nm2)

38

Example

39

See “Edmonds-Karp-Dinitz Example” on course web page

t

s

a d

b e

c f

t

s

a d

b e

c

f

t

10 10

10

10

10

10

10

1

9

10 10

10

10

10

10

9

1

10

s

a d

b e

c

f

t

9 10

10

10

10

10

8

1

10

1

0

1

s

a d

b e

c f

9 10

10

10

10

10

8

1

10

1

0 1

s

a d

b e

c f

t

0 10

1

1

1

10

8

1

10

10

0

1
9

9

9

s

a

d

b

e

c

f

t

0

10

1

1

1

10

8 1

10

10

0

1 99

9

 1

 9

 8

s

a

d

b

e

c

f

t

0

2

1

1

1

8

0 9

8

10

0

1 99

9

8

2

2

s

a

d

b

e

c

f

t

0

2

1

1

1

8

9

8

10

0

1

9

9

9

8

2

2

 1

s

a

d

b

e

c

f

t

1

1

0

0

9

9

9

10

0

0

10

10

10

9

1

1

0

s

a d

b e

c f

t

10/10 9/10

10/10

10/10

10/10

9/10

9/10

0/1

9/9

G0: the flow problem G0: BFS layering + Aug Path G1: BFS layering + Aug Path G2: BFS layering + Aug Path G3: BFS

layering +

Aug Path

G5: The Max Flow (19)

G1: 1st Residual Graph G2: 2nd Residual Graph G3: 3rd Residual Graph G4: 4th

Residual
Graph

Illustrating the Edmonds-Karp-Dinitz
Max Flow Algorithm.

Figures show successive stages of the E-K-D algorithm, including
the 4 augmenting paths selected, while solving a particular max-
flow problem. "Real" edges in the graph are shown in black, and
dashed if their residual capacity is zero. Green residual edges
are the back edges created to allow "undo" of flow on a "real"
edge. Each graph containing an augmenting path is drawn twice
– first as a "plain" graph, then showing the layering induced by
breadth-first search, together with an augmenting path chosen
at that stage (light blue). G4 has no remaining augmenting paths
(edges from s are saturated); G5 is the resulting max flow, with
each edge annotated by "flow" / "capacity".

Note how successive augmentations push nodes steadily farther
from s, and especially that (undirected) edge {a,f} is the "critical"
edge twice – first in G0, when a is at depth 1 in the BFS tree,
and again in G3 when f (not a) is at depth 3, which allows us to
undo the "mistake" of sending any flow through this edge.

Edge capacities > 1 could be increased by any value C greater
than 1 without fundamentally altering the series of graphs
shown. Hence, Ford-Fulkerson (lacking the E-K-D shortest path
innovation) might use ≈ C augmentations on G0, instead of 4.

0

(file)

s

a d

b e

c f

t

10 10

10

10

10

10

10

1

9

G0: the flow problem

Illustrating the Edmonds-Karp-Dinitz
Max Flow Algorithm.

Figures show successive stages of the E-K-D algorithm, including
the 4 augmenting paths selected, while solving a particular max-
flow problem. "Real" edges in the graph are shown in black, and
dashed if their residual capacity is zero. Green residual edges
are the back edges created to allow "undo" of flow on a "real"
edge. Each graph containing an augmenting path is drawn twice
– first as a "plain" graph, then showing the layering induced by
breadth-first search, together with an augmenting path chosen
at that stage (light blue). G4 has no remaining augmenting paths
(edges from s are saturated); G5 is the resulting max flow, with
each edge annotated by "flow" / "capacity".

Note how successive augmentations push nodes steadily farther
from s, and especially that (undirected) edge {a,f} is the "critical"
edge twice – first in G0, when a is at depth 1 in the BFS tree,
and again in G3 when f (not a) is at depth 3, which allows us to
undo the "mistake" of sending any flow through this edge.

Edge capacities > 1 could be increased by any value C greater
than 1 without fundamentally altering the series of graphs
shown. Hence, Ford-Fulkerson (lacking the E-K-D shortest path
innovation) might use ≈ C augmentations on G0, instead of 4.

40

s

a d

b e

c f

t

10 10

10

10

10

10

10

1

9

G0: the flow problem

Illustrating the Edmonds-Karp-Dinitz
Max Flow Algorithm.

Figures show successive stages of the E-K-D algorithm, including
the 4 augmenting paths selected, while solving a particular max-
flow problem. "Real" edges in the graph are shown in black, and
dashed if their residual capacity is zero. Green residual edges
are the back edges created to allow "undo" of flow on a "real"
edge. Each graph containing an augmenting path is drawn twice
– first as a "plain" graph, then showing the layering induced by
breadth-first search, together with an augmenting path chosen
at that stage (light blue). G4 has no remaining augmenting paths
(edges from s are saturated); G5 is the resulting max flow, with
each edge annotated by "flow" / "capacity".

Note how successive augmentations push nodes steadily farther
from s, and especially that (undirected) edge {a,f} is the "critical"
edge twice – first in G0, when a is at depth 1 in the BFS tree,
and again in G3 when f (not a) is at depth 3, which allows us to
undo the "mistake" of sending any flow through this edge.

Edge capacities > 1 could be increased by any value C greater
than 1 without fundamentally altering the series of graphs
shown. Hence, Ford-Fulkerson (lacking the E-K-D shortest path
innovation) might use ≈ C augmentations on G0, instead of 4.

t

s

a d

b e

c

f

t

10 10

10

10

10

10

9

1

10

s

a d

b e

c

f

t

9 10

10

10

10

10

8

1

10

1

0

1

s

a d

b e

c f

9 10

10

10

10

10

8

1

10

1

0 1 1

 9

G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph

41

Critical edge: {a,f}

s

a d

b e

c f

t

10 10

10

10

10

10

10

1

9

G0: the flow problem

Illustrating the Edmonds-Karp-Dinitz
Max Flow Algorithm.

Figures show successive stages of the E-K-D algorithm, including
the 4 augmenting paths selected, while solving a particular max-
flow problem. "Real" edges in the graph are shown in black, and
dashed if their residual capacity is zero. Green residual edges
are the back edges created to allow "undo" of flow on a "real"
edge. Each graph containing an augmenting path is drawn twice
– first as a "plain" graph, then showing the layering induced by
breadth-first search, together with an augmenting path chosen
at that stage (light blue). G4 has no remaining augmenting paths
(edges from s are saturated); G5 is the resulting max flow, with
each edge annotated by "flow" / "capacity".

Note how successive augmentations push nodes steadily farther
from s, and especially that (undirected) edge {a,f} is the "critical"
edge twice – first in G0, when a is at depth 1 in the BFS tree,
and again in G3 when f (not a) is at depth 3, which allows us to
undo the "mistake" of sending any flow through this edge.

Edge capacities > 1 could be increased by any value C greater
than 1 without fundamentally altering the series of graphs
shown. Hence, Ford-Fulkerson (lacking the E-K-D shortest path
innovation) might use ≈ C augmentations on G0, instead of 4.

t

s

a d

b e

c

f

t

10 10

10

10

10

10

9

1

10

s

a d

b e

c

f

t

9 10

10

10

10

10

8

1

10

1

0

1

s

a d

b e

c f

9 10

10

10

10

10

8

1

10

1

0 1 1

 9

G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph

42

Critical edge: {a,f}

t

s

a d

b e

c

f

t

10 10

10

10

10

10

9

1

10

s

a d

b e

c

f

t

9 10

10

10

10

10

8

1

10

1

0

1

s

a d

b e

c f

9 10

10

10

10

10

8

1

10

1

0 1 1

 9

G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph

43

t

s

a d

b e

c

f

t

10 10

10

10

10

10

9

1

10

s

a d

b e

c

f

t

9 10

10

10

10

10

8

1

10

1

0

1

s

a d

b e

c f

9 10

10

10

10

10

8

1

10

1

0 1 1

 9

G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph

44

Critical edge: {s, a}

t

s

a d

b e

c

f

t

10 10

10

10

10

10

9

1

10

s

a d

b e

c

f

t

9 10

10

10

10

10

8

1

10

1

0

1

s

a d

b e

c f

9 10

10

10

10

10

8

1

10

1

0 1 1

 9

G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph

s

a d

b e

c f

t

0 10

1

1

1

10

8

1

10

10

0

1
9

9

9

s

a

d

b

e

c

f

t

0

10

1

1

1

10

8 1

10

10

0

1 99

9

 8

s

a

d

b

e

c

f

t

0

2

1

1

1

8

0 9

8

10

0

1 99

9

8

2

2

G2: BFS layering + Aug PathG2: 2nd Residual Graph G3: 3rd Residual Graph

45

Critical edge: {s, a}

s

a d

b e

c f

t

0 10

1

1

1

10

8

1

10

10

0

1
9

9

9

s

a

d

b

e

c

f

t

0

10

1

1

1

10

8 1

10

10

0

1 99

9

 8

s

a

d

b

e

c

f

t

0

2

1

1

1

8

0 9

8

10

0

1 99

9

8

2

2

G2: BFS layering + Aug PathG2: 2nd Residual Graph G3: 3rd Residual Graph

46

s

a d

b e

c f

t

0 10

1

1

1

10

8

1

10

10

0

1
9

9

9

s

a

d

b

e

c

f

t

0

10

1

1

1

10

8 1

10

10

0

1 99

9

 8

s

a

d

b

e

c

f

t

0

2

1

1

1

8

0 9

8

10

0

1 99

9

8

2

2

G2: BFS layering + Aug PathG2: 2nd Residual Graph G3: 3rd Residual Graph

47

Critical edge: {f, t}

s

a d

b e

c f

t

0 10

1

1

1

10

8

1

10

10

0

1
9

9

9

s

a

d

b

e

c

f

t

0

10

1

1

1

10

8 1

10

10

0

1 99

9

 8

s

a

d

b

e

c

f

t

0

2

1

1

1

8

0 9

8

10

0

1 99

9

8

2

2

G2: BFS layering + Aug PathG2: 2nd Residual Graph G3: 3rd Residual Graph

48

Critical edge: {f, t}

s

a d

b e

c f

t

0 10

1

1

1

10

8

1

10

10

0

1
9

9

9

s

a

d

b

e

c

f

t

0

10

1

1

1

10

8 1

10

10

0

1 99

9

 8

s

a

d

b

e

c

f

t

0

2

1

1

1

8

0 9

8

10

0

1 99

9

8

2

2

G2: BFS layering + Aug PathG2: 2nd Residual Graph G3: 3rd Residual Graph

49

s

a d

b e

c f

t

0 10

1

1

1

10

8

1

10

10

0

1
9

9

9

s

a

d

b

e

c

f

t

0

10

1

1

1

10

8 1

10

10

0

1 99

9

 8

s

a

d

b

e

c

f

t

0

2

1

1

1

8

0 9

8

10

0

1 99

9

8

2

2

G2: BFS layering + Aug PathG2: 2nd Residual Graph G3: 3rd Residual Graph

s

a

d

b

e

c

f

t

0

2

1

1

1

8

9

8

10

0

1

9

9

9

8

2

2

 1

s

a

d

b

e

c

f

t

1

1

0

0

9

9

9

10

0

0

10

10

10

9

1

1

0

s

a d

b e

c f

t

10/10 9/10

10/10

10/10

10/10

9/10

9/10

0/1

9/9

G3: BFS

layering +

Aug Path

G5: The Max Flow (19)

G4: 4th

Residual
Graph

0

50 Critical edge: {a,f} (for the 2nd time)

s

a d

b e

c f

t

0 10

1

1

1

10

8

1

10

10

0

1
9

9

9

s

a

d

b

e

c

f

t

0

10

1

1

1

10

8 1

10

10

0

1 99

9

 8

s

a

d

b

e

c

f

t

0

2

1

1

1

8

0 9

8

10

0

1 99

9

8

2

2

G2: BFS layering + Aug PathG2: 2nd Residual Graph G3: 3rd Residual Graph

s

a

d

b

e

c

f

t

0

2

1

1

1

8

9

8

10

0

1

9

9

9

8

2

2

 1

s

a

d

b

e

c

f

t

1

1

0

0

9

9

9

10

0

0

10

10

10

9

1

1

0

s

a d

b e

c f

t

10/10 9/10

10/10

10/10

10/10

9/10

9/10

0/1

9/9

G3: BFS

layering +

Aug Path

G5: The Max Flow (19)

G4: 4th

Residual
Graph

0

G4: 4th
residual
graph

51 Critical edge: {a,f} (for the 2nd time)

s

a

d

b

e

c

f

t

0

2

1

1

1

8

9

8

10

0

1

9

9

9

8

2

2

 1

s

a

d

b

e

c

f

t

1

1

0

0

9

9

9

10

0

0

10

10

10

9

1

1

0

s

a d

b e

c f

t

10/10 9/10

10/10

10/10

10/10

9/10

9/10

0/1

9/9

G3: BFS

layering +

Aug Path

G5: The Max Flow (19)

G4: 4th

Residual
Graph

0

G4: 4th
residual
graph

52

s

a

d

b

e

c

f

t

0

2

1

1

1

8

9

8

10

0

1

9

9

9

8

2

2

 1

s

a

d

b

e

c

f

t

1

1

0

0

9

9

9

10

0

0

10

10

10

9

1

1

0

s

a d

b e

c f

t

10/10 9/10

10/10

10/10

10/10

9/10

9/10

0/1

9/9

G3: BFS

layering +

Aug Path

G5: The Max Flow (19)

G4: 4th

Residual
Graph

0

G4: 4th
residual
graph

53

Flow Applications

54

Applications of Max Flow

Many!
Most look nothing like flow, at least

superficially, but are deeply connected
Several interesting examples in 7.5-7.13

(7.8-7.11, 7.13 are optional, but interesting.
Airline scheduling and image segmentation
are especially recommended.)

A few more in following slides
55

Flow Integrality Theorem

Useful facts: If all capacities are integers
» Some max flow has an integer value
» Ford-Fulkerson method finds a max flow in

which f(u,v) is an integer for all edges (u,v)

t s

0.5/1

0.5/1 0.5/1

0.5/1

1/1 A valid flow,
but unnecessary

56

7.6: Disjoint Paths

Given a digraph with designated nodes s,t, are
there k edge-disjoint paths from s to t ?

You might try depth-first search; you might fail…
Instead:“edge caps=1, is max flow ≥ k?” Success!
Max-flow/min-cut also implies max number of

edge disjoint paths = min number of edges
whose removal separates s from t.

Many variants: node-disjoint, undirected, …
See 7.6

57

7.5: Bipartite Maximum Matching

Bipartite Graphs:
 G = (V,E)
 V = L ∪ R (L ∩ R = ∅)
 E ⊆ L × R

Matching:
 A set of edges M ⊆ E such
that no two edges touch a
common vertex

Problem:
 Find a max size matching M

58

Reducing Matching to Flow

Given bipartite G, build flow
network N as follows:
•  Add source s, sink t
•  Add edges s → L
•  Add edges R → t
•  All edge capacities 1

Theorem:

Max flow iff
max matching

s t

59

Reducing Matching to Flow

Theorem: Max matching size = max flow value

M → f ? Easy – send flow only through M
f → M ? Flow Integrality Thm, + cap constraints

s t

60

Notes on Matching

Max Flow Algorithm is probably overly
general here

But most direct matching algorithms use
"augmenting path”-type ideas similar to
that in max flow – See text (& homework?)

Time mn1/2 possible via Edmonds-Karp

61

7.12 Baseball Elimination

Some slides by Kevin Wayne
62

Baseball Elimination

Which teams have a chance of finishing the season with
most wins?

»  Montreal eliminated since it can finish with at most 80 wins,
but Atlanta already has 83.

»  wi + gi < wj ⇒ team i eliminated.
»  Sports writers rarely give a deeper analysis
»  Sufficient, but not necessary!

Team
i

Against = gij Wins
wi

To play
gi

Losses
li Atl Phi NY Mon

Montreal 77 3 82 1 2 0 -
New York 78 6 78 6 0 - 0

Philly 80 3 79 1 - 0 2
Atlanta 83 8 71 - 1 6 1

63

Baseball Elimination

Which teams have a chance of finishing the season with
most wins?

»  Philly can win 83, but still eliminated . . .
»  If Atlanta loses a game, then some other team wins one.

Remark. Depends on both how many games already
won and left to play, and on which opponents.

Team
i

Against = gij Wins
wi

To play
gi

Losses
li Atl Phi NY Mon

Montreal 77 3 82 1 2 0 -
New York 78 6 78 6 0 - 0

Philly 80 3 79 1 - 0 2
Atlanta 83 8 71 - 1 6 1

64

Baseball Elimination

Baseball elimination problem.
» Set of teams S.
» Distinguished team s ∈ S.
» Team x has won wx games already.
» Teams x & y play each other gxy more times.
» Can team s finish with (or tie for) most wins?

I.e., is there a way to allocate wins of the
remaining games so that s ends on top?

65

Can team 3 finish with most wins?
One unit of flow = one win
Assume team 3 wins all remaining games ⇒ w3 + g3 wins.
Divvy remaining games so that all teams have ≤ w3 + g3 wins.

Baseball Elimination:
Max Flow Formulation

s

1-5

2-5

4-5

2

4

5

t

1-2

1-4

2-4

1

g24 = 7 ∞ w3 + g3 - w4

team 4 can still
win this many
more games
without topping
team 3 games left

∞

game nodes
(excluding 3)

team nodes
(excluding 3) 66

Baseball Elimination: Max Flow Logic

s

1-5

2-5

4-5

2

4

5

t

1-2

1-4

2-4

1

∞

team 4 can still
win this many
more games
without topping
team 3 games left

∞

g24 = 7 w3 + g3 - w4

game nodes
(excluding 3)

team nodes
(excluding 3) 67

Team 3 is eliminated iff max flow < games left.
Integrality ⇒ each remaining x : y game added to # wins for x or y.
Capacities on (x, t) edges ensure no team wins too many games.
Capacities on (s,x-y) edges ensure no team plays too many games.
In max flow, unsaturated source edge = unplayed game; if played,

(either) winner would push ahead of team 3

Baseball Elimination:
Explanation for Sports Writers

Which teams have a chance of finishing the season with
most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Team
i

Against = gij Wins
wi

To play
gi

Losses
li NY Bal Bos Tor

Toronto 63 27 72 7 7 0 -
Boston 69 27 66 8 2 - 0

Baltimore 71 28 63 3 - 2 7
NY 75 28 59 - 3 8 7

Detroit 49 27 86 3 4 0 0

Det

-
0
4
3

-

AL East: August 30, 1996

68

Baseball Elimination:
Explanation for Sports Writers

Which teams could finish the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.
Certificate of elimination. R = {NY, Bal, Bos, Tor}

Have already won w(R) = 278 games.
Must win at least r(R) = 27 more.
Average team in R wins at least 305/4 > 76 games.

Team
i

Against = gij Wins
wi

To play
gi

Losses
li NY Bal Bos Tor

Toronto 63 27 72 7 7 0 -
Boston 69 27 66 8 2 - 0

Baltimore 71 28 63 3 - 2 7
NY 75 28 59 - 3 8 7

Detroit 49 27 86 3 4 0 0

Det

-
0
4
3

-
AL East: August 30, 1996

69

Baseball Elimination:
Explanation for Sports Writers

Certificate of
elimination

If then z eliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated
iff there exists a subset T* that eliminates z.

Proof idea. Let T* = teams on source side of min cut.

€

T ⊆ S, w(T) := wi
i∈T
∑
wins  

, g(T) := gx y
{x,y} ⊆ T

∑

remaining games      
,

€

w(T)+ g(T)
| T |

LB on avg # games won      

> wz + gz

70

(90 + 87 + 6) / 2 > 91,
so the set T = {NY, Tor}

proves Boston is eliminated.

w l g NY Balt Tor Bos
NY 90 11 - 1 6 4
Baltimore 88 6 1 - 1 4
Toronto 87 10 6 1 - 4
Boston 79 12 4 4 4 -

Note: T = {NY,Tor, Balt} is
NOT a certificate, since

(90+88+87+8)/3 = 91

Fig 7.21 Min cut ⇒ no flow of value g*, so Boston eliminated.

g* = 1+6+1 = 8

71

Baseball Elimination:
Explanation for Sports Writers

Pf of theorem.
Use max flow formulation, and consider min cut (A, B).
Define T* = team nodes on source side of min cut.
Observe x-y ∈ A iff both x ∈ T* and y ∈ T*.

infinite capacity edges ensure if x-y ∈ A then x ∈ A and y ∈ A
if x ∈ A and y ∈ A but x-y ∉ T*, then adding x-y to A decreases
capacity of cut

s

y

x t x-y g24 = 7 ∞
∞

wz + gz - wx

team x can still win this
many more games

games left

72

Baseball Elimination:
Explanation for Sports Writers

Pf of theorem.
Use max flow formulation, and consider min cut (A, B).
Define T* = team nodes on source side of min cut.
Observe x-y ∈ A iff both x ∈ T* and y ∈ T*.

Rearranging:

g(S −{z}) > cap(A, B)

= g(S −{z})− g(T*)
capacity of game edges leaving A  

+ (wz + gz −wx)
x∈T*
∑

capacity of team edges leaving A  

= g(S −{z})− g(T*) − w(T*) + |T* | (wz + gz)

€

wz + gz <
w(T*)+ g(T*)

|T* | 73

Matching & Baseball: Key Points

Can (sometimes) take problems that seemingly
have nothing to do with flow & reduce them to
a flow problem

How? Build a clever network; map allocation of
stuff in original problem (match edges; wins)
to allocation of flow in network. Clever edge
capacities constrain solution to mimic original
problem in some way. Integrality useful.

74

Matching & Baseball: Key Points

Furthermore, in the baseball example, min cut
can be translated into a succinct certificate or
proof of some property that is much more
transparent than “see, I ran max-flow and it
says flow must be less than g* ”.

These examples suggest why max flow is so
important – it’s a very general tool used in
many other algorithms.

Even more broadly – reduction is a powerful
tool for algorithm design/analysis

75

Max Flow: Summary
●  Important problem with a long history
●  Properties and Tools:

»  Duality: Max Flow – Min Cut Theorem
»  Flow Integrality Theorem
»  Residual graphs/augmenting paths

●  Algorithms:
»  Ford-Fulkerson (“method”)
»  Edmonds-Karp-Dinitz ‘70: shortest aug first

●  Many applications:
»  Disjoint paths, bipartite matching, “baseball,” …
»  “Reduction” as a key alg design technique 76

