
CSE 421 
Introduction to Algorithms 

The Network Flow Problem 
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How much stuff can flow from s to t? 

The Network Flow Problem 
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Reference:  On the history of the transportation and maximum flow problems. 
Alexander Schrijver in Math Programming, 91: 3, 2002. 

Soviet Rail Network, 1955 
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Net Flow: Formal Definition 

Given: 
A digraph G = (V,E) 
Two vertices s,t in V  

(s = source, t = sink) 
A capacity c(u,v) ≥ 0 

for each (u,v) ∈ E 
(and c(u,v) = 0 for all non-
edges (u,v)) 

Find: 
A flow function f: V x V → R s.t., 
for all u,v: 

–  f(u,v) ≤ c(u,v)  [Capacity Constraint] 
–  f(u,v) = -f(v,u)  [Skew Symmetry] 
–  if u ≠ s,t, f(u,V) = 0  [Flow Conservation] 

 

Maximizing total flow | f | = f(s,V) 

∑ ∑∈ ∈= Xx Yy yxfYXf ),(),(
Notation: 

(technically, not quite the same 
definition as in the  book…) 
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f(s,u) = f(u,t) =  2 
f(u,s) = f(t,u) = -2  (Why?) 

f(s,t)  = -f(t,s) = 0  (In every flow function for this G.  Why?) 

Example: A Flow Function 

s u t 2/2 2/3 

022 =+−=+=∑= ∈ )t,u(f)s,u(f)v,u(f)V,u(f Vv

“flow”/“capacity”, not 0.66... 
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Not shown: f(u,v) if ≤ 0 
Note:  max flow ≥ 4 since f is a flow, |f | = 4 

Example: A Flow Function 
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Max Flow via  
a Greedy Alg? 

While there is an  
s → t path in G 

Pick such a path, p 
Find cp, the min capacity 

of any edge in p 
Subtract cp from all 

capacities on p 
Delete edges of 

capacity 0 
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Max Flow via a Greedy Alg? 

This does NOT always find a max flow: 
If you pick s → b → a → t first, 
 
 
 
 
 
 
Flow stuck at 2,  but 3 possible (above). 
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A Brief History of Flow 
#  Year  Discoverer(s)  Bound 
1  1951  Dantzig  O(n2mC) 
2  1955  Ford & Fulkerson  O(nmC) 
3  1970  Dinitz; Edmonds & Karp  O(nm2) 
4  1970  Dinitz  O(n2m) 
5  1972  Edmonds & Karp; Dinitz  O(m2 log C) 
6  1973  Dinitz;Gabow  O(nm log C) 
7  1974  Karzanov  O(n3) 
8  1977  Cherkassky  O(n2 sqrt(m)) 
9  1980  Galil & Naamad  O(nm log2 n) 
10  1983  Sleator & Tarjan  O(nm log n) 
11  1986  Goldberg &Tarjan  O(nm log (n2/m)) 
12  1987  Ahuja & Orlin  O(nm + n2 log C) 
13  1987  Ahuja et al.  O(nm log(n sqrt(log C)/(m+2)) 
14  1989  Cheriyan & Hagerup  E(nm + n2 log2 n) 
15  1990  Cheriyan et al.  O(n3/log n) 
16  1990  Alon  O(nm + n8/3 log n) 
17  1992  King et al.  O(nm + n2+ε) 
18  1993  Phillips & Westbrook  O(nm(logm/n n + log2+ε n) 
19  1994  King et al.  O(nm(logm/(n log n) n) 
20  1997  Goldberg & Rao  O(m3/2 log(n2/m) log C) ; O(n2/3 m log(n2/m) logC) 
…   …   …  … 

n = # of vertices 
m= # of edges 
C = Max capacity 
 
 
 
 
Source: Goldberg & Rao, 
FOCS ‘97 
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Residual Capacity 

The residual capacity (w.r.t. f ) of (u,v) is  
  cf (u,v) = c(u,v) – f (u,v) 
E.g.: 
  cf (s,b) = 7;  
  cf (a,x) = 1;  
  cf (x,a) = 3;  
  cf (x,t)  = 0 (a saturated edge) 
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Residual Networks 
& Augmenting Paths 

The residual network (w.r.t. f ) is the 
graph Gf = (V,Ef ), where  
 

 Ef = { (u,v) | cf (u,v) > 0 } 
 
An augmenting path (w.r.t. f ) is a simple 
s → t path in Gf 
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A Residual Network 
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Gf = (V,Ef), where  
Ef = { (u,v) | cf(u,v) > 0 } 
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An Augmenting Path 
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augmenting path: 
a simple s → t path in Gf 
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Lemma 1 

If f admits an augmenting path p, then f is 
not maximal. 

 
Proof: “obvious” -- augment along p by cp, 

the min residual capacity of p’s edges. 
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Augmenting A Flow 
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Augmenting A Flow 
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If f  is a flow & p an augmenting path of capacity cp, 
then f ’ is also a valid flow, where  
 
 
 
 
 
Proof:  

a)  Flow conservation  – easy 
b)  Skew symmetry  – easy 
c)  Capacity constraints  – pretty easy; next slides 

Lemma 1’:  
Augmented Flows are Flows 
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f  a flow & p an aug path of cap cp, then f ’  also a valid flow.  
Proof (Capacity constraints): 

 (u,v), (v,u) not on path: no change 
 (u,v) on path:  

f ’(u,v) = f(u,v) + cp   
  ≤  f(u,v) + cf(u,v)   

        =  f(u,v) + c(u,v) - f(u,v)  
       =  c(u,v) 

Lma 1’: Augmented 
Flows are Flows !
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vuf
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vuf p

p

f ’ (v,u) =  f(v,u) - cp 
 <  f(v,u) 
 ≤  c(v,u)                      QED 

Residual Capacity: 
   0 < cp ≤ cf(u,v) =  
                 c(u,v) - f(u,v) 
Cap Constraints: 
  -c(v,u) ≤ f(u,v) ≤ c(u,v) 
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Let (u,v) be any edge in  
augmenting path.  Note  
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0 
 

Case 1: f(u,v) ≥ 0:  
 
 

Add forward flow 
 

Lemma 1’ Example—Case 1 
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Let (u,v) be any edge in  
augmenting path.  Note  
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0 

Case 2: f(u,v) ≤ -cp: 
f(v,u) = -f(u,v) ≥ cp  

 
Cancel/redirect  

reverse flow  
 

Lemma 1’ Example—Case 2 
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Let (u,v) be any edge in  
augmenting path.  Note  
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0 

Case 3: -cp < f(u,v) < 0: 
   
 
??? 
 
[E.g., cp = 8, f(u,v) = -5] 

Lemma 1’ Example—Case 3 
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Let (u,v) be any edge in  
augmenting path.  Note  
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0 

Case 3: -cp < f(u,v) < 0 
           cp > f(v,u) > 0:   

Both:  
cancel/redirect  
reverse flow  

and 
 add forward flow  

Lemma 1’ Example—Case 3 
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Ford-Fulkerson Method 

While Gf has an augmenting path, 
augment 

 
Questions: 

» Does it halt? 
» Does it find a maximum flow? 
» How fast? 
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Cuts 

A partition S,T of V is a cut if s ∈ S, t ∈ T. 
Capacity of cut S,T is ∑
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Lemma 2 

For any flow f and any cut S,T, 
the net flow across the cut equals the total 
flow, i.e., | f | = f(S,T), and    
the net flow across the cut cannot exceed the 
capacity of the cut, i.e. f(S,T) ≤ c(S,T) 

Corollary: 
Max flow ≤ Min cut  
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Cut Cap  = 2 
Net Flow = 1 
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Lemma 2 

For any flow f and any cut S,T, 
net flow across cut = total flow ≤ cut capacity 

Proof: 
Track a flow unit. Starts at s, ends at t.  
crosses cut an odd # of times; net = 1. 
Last crossing uses a  
forward edge totaled  
in C(S,T) 

1 s 
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1 
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Cut Cap  = 3 
Net Flow = 1 

Cut Cap  = 2 
Net Flow = 1 
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this pf is very hand-wavy 
–FIX 
 
eg, unclear every flow 
can be decomposed into 
unit paths, nor why that 
adds up to total flow 
result… 



Max Flow / Min Cut Theorem 

For any flow f, the following are equivalent 
  (1) | f | = c(S,T) for some cut S,T (a min cut) 

 (2) f is a maximum flow 
 (3) f admits no augmenting path 

Proof: 
 (1) ⇒ (2): corollary to lemma 2 
 (2) ⇒ (3): contrapositive of lemma 1 
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(3) ⇒ (1) 
(no aug) ⇒ (cut) 

S = { u | ∃ an augmenting path wrt f from s to u } 
T = V - S;  s ∈ S, t ∈ T 
For any (u,v) in S × T, ∃ an augmenting path 

from s to u, but not to v. 
∴ (u,v) has 0 residual capacity: 

 (u,v) ∈ E ⇒ saturated  f(u,v) = c(u,v)  
 (v,u) ∈ E ⇒ no flow   f(u,v) = -f(v,u) = 0 

This is true for every edge crossing the cut, i.e.  

s t 

S   T 

u v 

=== ∑ ∑∈ ∈Su Tv vufTSff ),(),(||
),(),(),( ),(,,),(,, TScvucvuf EvuTvSuEvuTvSu ==∑∑ ∈∈∈∈∈∈

Id
ea

: w
he

re
’s

 th
e 

bo
ttl

en
ec

k 

29 



Corollaries & Facts 

If Ford-Fulkerson terminates, then it’s 
found a max flow. 
It will terminate if c(e) integer or rational 
(but may not if they’re irrational). 

However, may take exponential time, 
even with integer capacities: 
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How to Make it Faster 

Many possibilities.  Three important ones: 
Edmonds-Karp ‘70; Dinitz ’70  (below) 

1st “strongly” poly time alg. (next)  T = O(nm2) 
“Scaling” [Edmonds-Karp, ‘72; Dinitz ’72] 

do largest edges first; see text. 
if C = max capacity,   T = O(m2log C) 

Preflow-Push [Goldberg, Tarjan ‘86] 
see text   T = O(n3) 
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Edmonds-Karp-Dinitz ‘70 Algorithm 

Use a shortest augmenting path  
(via Breadth First Search in residual graph) 
 
Time: O(n m2) 
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BFS/Shortest Path Lemmas 

Distance from s is never reduced by: 
• Deleting an edge 

proof: no new (hence no shorter) path created 
• Adding a back-edge (i.e., an edge (u,v), 

provided v is nearer than u) 
proof: BFS is unchanged, since v visited before 
(u,v) examined 

s 

v 

u 

a back edge 
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Lemma 3 

Let f be a flow, Gf the residual graph, and 
p a shortest augmenting path.  Then no 
vertex is closer to s in the new residual 
graph Gf+p after augmentation along p. 
 
Proof: Augmentation only deletes edges,  
adds back edges 

34 



Augmentation vs BFS 
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Theorem 2 

The Edmonds-Karp-Dinitiz  Algorithm 
performs O(mn) flow augmentations 

 
Proof:  

 {u,v} is critical on augmenting path p if it’s 
closest to s having min residual capacity. 
 Won’t be critical again until farther from s. 
 So each edge critical at most n times. 
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Augmentation vs BFS Level 

G 

t 

v 

u 

x 

s Gf 

t 

v 

u 

x 

s Gf ’ 

t 

v 

u 

x 

s 

5/9 

3/10 0/5 

3/3 

2/5 

2/- 

6/- 

t 

v 

u 

s 

3 

Glater 

≥ k+1 

≥ k 

0       . . . 

B
FS

 
Le

ve
l 

k -1 

k 

0       . . . 

B
FS

 
Le

ve
l 

4 
5 

7 
8 

3 
0 

2 

3 

1 
8 

4 
11 

0 
3 

5 

0 

37 



Corollary 

Edmonds-Karp-Dinitz runs in O(nm2) 
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Example 

39 

See “Edmonds-Karp-Dinitz Example” on course web page 
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G0: the flow problem G0: BFS layering + Aug Path G1: BFS layering + Aug Path G2: BFS layering + Aug Path G3: BFS 

layering + 

Aug Path

G5: The Max Flow (19)

G1: 1st Residual Graph G2: 2nd Residual Graph G3: 3rd Residual Graph G4: 4th 

Residual 
Graph

Illustrating the Edmonds-Karp-Dinitz
Max Flow Algorithm.  

Figures show successive stages of the E-K-D algorithm, including 
the 4 augmenting paths selected, while solving a particular max-
flow problem.  "Real" edges in the graph are shown in black, and 
dashed if their residual capacity is zero.  Green residual edges 
are the back edges created to allow "undo" of flow on a "real" 
edge.  Each graph containing an augmenting path is drawn twice 
– first as a "plain" graph, then showing the layering induced by 
breadth-first search, together with an augmenting path chosen 
at that stage (light blue).  G4 has no remaining augmenting paths 
(edges from s are saturated); G5 is the resulting max flow, with 
each edge annotated by "flow" / "capacity".  

Note how successive augmentations push nodes steadily farther 
from s, and especially that (undirected) edge {a,f} is the "critical" 
edge twice – first in G0, when a is at depth 1 in the BFS tree, 
and again in G3 when f (not a) is at depth 3, which allows us to 
undo the "mistake" of sending any flow through this edge.

Edge capacities > 1 could be increased by any value C greater 
than 1 without fundamentally altering the series of graphs 
shown.  Hence, Ford-Fulkerson (lacking the E-K-D shortest path 
innovation) might use ≈ C augmentations on G0, instead of 4.
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G0: the flow problem

Illustrating the Edmonds-Karp-Dinitz
Max Flow Algorithm.  

Figures show successive stages of the E-K-D algorithm, including 
the 4 augmenting paths selected, while solving a particular max-
flow problem.  "Real" edges in the graph are shown in black, and 
dashed if their residual capacity is zero.  Green residual edges 
are the back edges created to allow "undo" of flow on a "real" 
edge.  Each graph containing an augmenting path is drawn twice 
– first as a "plain" graph, then showing the layering induced by 
breadth-first search, together with an augmenting path chosen 
at that stage (light blue).  G4 has no remaining augmenting paths 
(edges from s are saturated); G5 is the resulting max flow, with 
each edge annotated by "flow" / "capacity".  

Note how successive augmentations push nodes steadily farther 
from s, and especially that (undirected) edge {a,f} is the "critical" 
edge twice – first in G0, when a is at depth 1 in the BFS tree, 
and again in G3 when f (not a) is at depth 3, which allows us to 
undo the "mistake" of sending any flow through this edge.

Edge capacities > 1 could be increased by any value C greater 
than 1 without fundamentally altering the series of graphs 
shown.  Hence, Ford-Fulkerson (lacking the E-K-D shortest path 
innovation) might use ≈ C augmentations on G0, instead of 4.
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G0: the flow problem

Illustrating the Edmonds-Karp-Dinitz
Max Flow Algorithm.  

Figures show successive stages of the E-K-D algorithm, including 
the 4 augmenting paths selected, while solving a particular max-
flow problem.  "Real" edges in the graph are shown in black, and 
dashed if their residual capacity is zero.  Green residual edges 
are the back edges created to allow "undo" of flow on a "real" 
edge.  Each graph containing an augmenting path is drawn twice 
– first as a "plain" graph, then showing the layering induced by 
breadth-first search, together with an augmenting path chosen 
at that stage (light blue).  G4 has no remaining augmenting paths 
(edges from s are saturated); G5 is the resulting max flow, with 
each edge annotated by "flow" / "capacity".  

Note how successive augmentations push nodes steadily farther 
from s, and especially that (undirected) edge {a,f} is the "critical" 
edge twice – first in G0, when a is at depth 1 in the BFS tree, 
and again in G3 when f (not a) is at depth 3, which allows us to 
undo the "mistake" of sending any flow through this edge.

Edge capacities > 1 could be increased by any value C greater 
than 1 without fundamentally altering the series of graphs 
shown.  Hence, Ford-Fulkerson (lacking the E-K-D shortest path 
innovation) might use ≈ C augmentations on G0, instead of 4.
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G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph
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Critical edge: {a,f} 
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G0: the flow problem

Illustrating the Edmonds-Karp-Dinitz
Max Flow Algorithm.  

Figures show successive stages of the E-K-D algorithm, including 
the 4 augmenting paths selected, while solving a particular max-
flow problem.  "Real" edges in the graph are shown in black, and 
dashed if their residual capacity is zero.  Green residual edges 
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breadth-first search, together with an augmenting path chosen 
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(edges from s are saturated); G5 is the resulting max flow, with 
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and again in G3 when f (not a) is at depth 3, which allows us to 
undo the "mistake" of sending any flow through this edge.
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than 1 without fundamentally altering the series of graphs 
shown.  Hence, Ford-Fulkerson (lacking the E-K-D shortest path 
innovation) might use ≈ C augmentations on G0, instead of 4.
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G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph
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Critical edge: {a,f} 
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G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph
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G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph
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Critical edge: {s, a} 
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G0: BFS layering + Aug Path G1: BFS layering + Aug PathG1: 1st Residual Graph
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Critical edge: {s, a} 
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Critical edge: {f, t} 
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Critical edge: {f, t} 
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51 Critical edge: {a,f} (for the 2nd time) 
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Flow Applications 
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Applications of Max Flow 

Many! 
Most look nothing like flow, at least 

superficially, but are deeply connected 
Several interesting examples in 7.5-7.13 

(7.8-7.11, 7.13  are optional, but interesting. 
Airline scheduling and image segmentation 
are especially recommended.) 

A few more in following slides 
55 



Flow Integrality Theorem 

Useful facts: If all capacities are integers 
» Some max flow has an integer value 
» Ford-Fulkerson method finds a max flow in 

which f(u,v) is an integer for all edges (u,v) 

t s 

0.5/1 

0.5/1 0.5/1 

0.5/1 

1/1 A valid flow,  
but unnecessary 
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7.6: Disjoint Paths 

Given a digraph with designated nodes s,t, are 
there k edge-disjoint paths from s to t ? 

You might try depth-first search; you might fail… 
Instead:“edge caps=1, is max flow ≥ k?” Success! 
Max-flow/min-cut also implies max number of 

edge disjoint paths = min number of edges 
whose removal separates s from t. 

Many variants: node-disjoint, undirected, … 
See 7.6 
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7.5: Bipartite Maximum Matching 

Bipartite Graphs: 
 G = (V,E) 
 V = L ∪ R  (L ∩ R = ∅) 
 E ⊆ L × R 
 

Matching:  
 A set of edges M ⊆ E such 
that no two edges touch a 
common vertex 
 

Problem: 
 Find a max size matching M 
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Reducing Matching to Flow 

Given bipartite G, build flow 
network N as follows: 
•  Add source s, sink t 
•  Add edges s  → L 
•  Add edges R → t 
•  All edge capacities 1 

 
Theorem:  

Max flow iff  
max matching 

s t 
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Reducing Matching to Flow 

Theorem: Max matching size = max flow value 
 
 
 
 
 
 
M → f ?  Easy – send flow only through M 
f → M ?  Flow Integrality Thm, + cap constraints 

s t 

60 



Notes on Matching  

Max Flow Algorithm is probably overly 
general here 

But most direct matching algorithms use 
"augmenting path”-type ideas similar to 
that in max flow – See text (& homework?) 

Time mn1/2 possible via Edmonds-Karp 
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7.12  Baseball Elimination 

Some slides by Kevin Wayne 
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Baseball Elimination 

 
Which teams have a chance of finishing the season with 
most wins?  

»  Montreal eliminated since it can finish with at most 80 wins, 
but Atlanta already has 83. 

»  wi + gi < wj   ⇒ team i eliminated. 
»  Sports writers rarely give a deeper analysis 
»  Sufficient, but not necessary! 

Team 
i 

Against = gij Wins 
wi 

To play 
gi 

Losses 
li Atl Phi NY Mon 

Montreal 77 3 82 1 2 0 - 
New York 78 6 78 6 0 - 0 

Philly 80 3 79 1 - 0 2 
Atlanta 83 8 71 - 1 6 1 
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Baseball Elimination 

 

Which teams have a chance of finishing the season with 
most wins?  

»  Philly can win 83, but still eliminated . . . 
»  If Atlanta loses a game, then some other team wins one. 

Remark. Depends on both how many games already 
won and left to play, and on which opponents. 

Team 
i 

Against = gij Wins 
wi 

To play 
gi 

Losses 
li Atl Phi NY Mon 

Montreal 77 3 82 1 2 0 - 
New York 78 6 78 6 0 - 0 

Philly 80 3 79 1 - 0 2 
Atlanta 83 8 71 - 1 6 1 
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Baseball Elimination 

Baseball elimination problem. 
» Set of teams S. 
» Distinguished team s ∈ S. 
» Team x has won wx games already. 
» Teams x & y play each other gxy more times. 
» Can team s finish with (or tie for) most wins?   

I.e., is there a way to allocate wins of the  
remaining games so that s ends on top? 
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Can team 3 finish with most wins? 
One unit of flow = one win 
Assume team 3 wins all remaining games  ⇒  w3 + g3 wins.  
Divvy remaining games so that all teams have ≤  w3 + g3 wins. 

Baseball Elimination: 
Max Flow Formulation 

s 

1-5 

2-5 

4-5 

2 

4 

5 

t 

1-2 

1-4 

2-4 

1 

g24 = 7 ∞ w3 + g3  - w4 

team 4 can still 
win this many 
more games 
without topping 
team 3 games left 

∞ 

game nodes 
(excluding 3) 

team nodes 
(excluding 3) 66 



Baseball Elimination: Max Flow Logic 

s 
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2-5 

4-5 
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1-2 

1-4 

2-4 

1 

∞ 

team 4 can still 
win this many 
more games 
without topping 
team 3 games left 

∞ 

g24 = 7 w3 + g3  - w4 

game nodes 
(excluding 3) 

team nodes 
(excluding 3) 67 

Team 3 is eliminated iff max flow < games left. 
Integrality ⇒ each remaining x : y game added to # wins for x or y. 
Capacities on (x, t) edges ensure no team wins too many games. 
Capacities on (s,x-y) edges ensure no team plays too many games. 
In max flow, unsaturated source edge = unplayed game; if played, 

(either) winner would push ahead of team 3 
 

 



Baseball Elimination:  
Explanation for Sports Writers 

 
 
Which teams have a chance of finishing the season with 
most wins?  

Detroit could finish season with 49 + 27 = 76 wins. 

Team 
i 

Against = gij Wins 
wi 

To play 
gi 

Losses 
li NY Bal Bos Tor 

Toronto 63 27 72 7 7 0 - 
Boston 69 27 66 8 2 - 0 

Baltimore 71 28 63 3 - 2 7 
NY 75 28 59 - 3 8 7 

Detroit 49 27 86 3 4 0 0 

Det 

- 
0 
4 
3 

- 

AL East:  August 30, 1996 
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Baseball Elimination:  
Explanation for Sports Writers 

 
 
 
 
Which teams could finish the season with most wins?  

Detroit could finish season with 49 + 27 = 76 wins. 
Certificate of elimination.  R = {NY, Bal, Bos, Tor} 

Have already won w(R) = 278 games. 
Must win at least r(R) = 27 more. 
Average team in R wins at least 305/4 > 76 games. 

Team 
i 

Against = gij Wins 
wi 

To play 
gi 

Losses 
li NY Bal Bos Tor 

Toronto 63 27 72 7 7 0 - 
Boston 69 27 66 8 2 - 0 

Baltimore 71 28 63 3 - 2 7 
NY 75 28 59 - 3 8 7 

Detroit 49 27 86 3 4 0 0 

Det 

- 
0 
4 
3 

- 
AL East:  August 30, 1996 
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Baseball Elimination:  
Explanation for Sports Writers 

Certificate of  
elimination 
 
 
If                                     then z eliminated (by subset T). 
 
Theorem.  [Hoffman-Rivlin 1967]  Team z is eliminated 
iff there exists a subset T* that eliminates z. 
 
Proof idea.  Let T* = teams on source side of min cut. 

  

€ 

T ⊆ S, w(T ) := wi
i∈T
∑
# wins   

, g(T ) := gx y
{x,y} ⊆  T

∑

# remaining games       
,

    

€ 

w(T )+ g(T )
| T |

LB on avg # games won       

> wz + gz
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( 90  +  87  +  6  ) / 2  > 91, 
so the set T = {NY, Tor} 

proves Boston is eliminated. 

w l g NY Balt Tor Bos 
NY 90 11 - 1 6 4 
Baltimore 88 6 1 - 1 4 
Toronto 87 10 6 1 - 4 
Boston 79 12 4 4 4 - 

Note: T = {NY,Tor, Balt} is 
NOT a certificate, since 

(90+88+87+8)/3 = 91 

Fig 7.21 Min cut ⇒ no flow of value g*, so Boston eliminated. 

g* = 1+6+1 = 8 

71 



Baseball Elimination:  
Explanation for Sports Writers 

Pf of theorem.  
Use max flow formulation, and consider min cut (A, B). 
Define T* = team nodes on source side of min cut. 
Observe x-y ∈ A iff both x ∈ T* and y ∈ T*. 

infinite capacity edges ensure if x-y ∈ A then x ∈ A and y ∈ A 
if x ∈ A and y ∈ A but x-y ∉ T*, then adding x-y to A decreases 
capacity of cut 
 

 

s 

y 

x t x-y g24 = 7 ∞ 
∞ 

wz + gz  - wx 

team x can still win this 
many more games 

games left 
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Baseball Elimination:  
Explanation for Sports Writers 

Pf of theorem.  
Use max flow formulation, and consider min cut (A, B). 
Define T* = team nodes on source side of min cut. 
Observe x-y ∈ A iff both x ∈ T* and y ∈ T*. 
  
 
 
 
 
 
Rearranging:   
 

g(S −{z}) > cap(A, B)

= g(S −{z})− g(T*)
capacity of game edges leaving A  

+ (wz + gz −wx )
x∈T*
∑

capacity of team edges leaving A  

= g(S −{z})− g(T*) − w(T*) + |T* | (wz + gz )

€ 

wz + gz <
w(T*)+ g(T*)

|T* | 73 



Matching & Baseball: Key Points 

Can (sometimes) take problems that seemingly 
have nothing to do with flow & reduce them to 
a flow problem 

How? Build a clever network; map allocation of 
stuff in original problem (match edges; wins) 
to allocation of flow in network.  Clever edge 
capacities constrain solution to mimic original 
problem in some way. Integrality useful. 
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Matching & Baseball: Key Points 

Furthermore, in the baseball example, min cut 
can be translated into a succinct certificate or 
proof of some property that is much more 
transparent than “see, I ran max-flow and it 
says flow must be less than g* ”. 

These examples suggest why max flow is so 
important – it’s a very general  tool used in 
many other algorithms. 

Even more broadly – reduction is a powerful 
tool for algorithm design/analysis 
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Max Flow: Summary 
●  Important problem with a long history 
●  Properties and Tools: 

»  Duality: Max Flow – Min Cut Theorem 
»  Flow Integrality Theorem 
»  Residual graphs/augmenting paths 

●  Algorithms: 
»  Ford-Fulkerson (“method”) 
»  Edmonds-Karp-Dinitz ‘70: shortest aug first 

●  Many applications: 
»  Disjoint paths, bipartite matching, “baseball,” … 
»  “Reduction” as a key alg design technique 76 


