



CSE 421 Algorithms



Richard Anderson Lecture 23 Network Flow



# Today



- · Maxflow-MinCut Theorem
- · Network Flow Applications

#### **Network Flow Definitions**

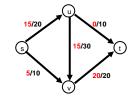
- Flowgraph: Directed graph with distinguished vertices s (source) andt (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assignflows f(e) to the edges such that:
  - $0 \le f(e) \le c(e)$
  - Flow is conserved at vertices other than s and t
    - Flow conservation: flow going into a vertex equals the flow going out
  - The flow leaving the source is a large as possible

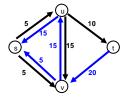
#### Lecture Review

- Residual Graph how a flow can be augmented
- · Ford Fulkerson Algorithm
- · Correctness Proof for FF Algorithm
  - FF Terminates with a valid flow
  - When FF completes residual graph is disconnected
  - If the Residual Graph is disconnected, then the flow is maximum
    - · Max Flow, Min-Cut Theorem

# Residual Graph

- · Flow graph showing the remaining capacity
- Flow graph G, Residual Graph  $G_{\!R}$ 
  - G: edge e from u to v with capacity c and flow f
  - G<sub>R</sub>: edge e' from u to v with capacity c f
  - G<sub>R</sub>: edge e" from v to u with capacity f





# Ford-Fulkerson Algorithm (1956)

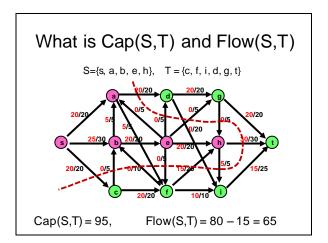
while not done

Construct residual graph  $G_R$  Find an s-t path P in  $G_R$  with capacity b>0 Add b units along in G

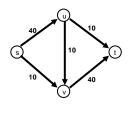
If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

# Cuts in a graph

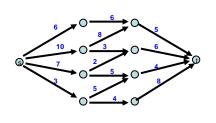
- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
  - Sum of flows out of S minus sum of flows into S
- Flow(S,T) <= Cap(S,T)



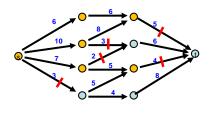
# Minimum value cut



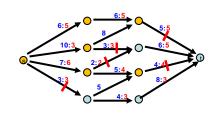
## Find a minimum value cut



## Find a minimum value cut



## Find a minimum value cut



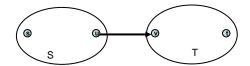
## MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G<sub>R</sub> reachable from s with paths of positive capacity





Let S be the set of vertices in G<sub>R</sub> reachable from s with paths of positive capacity



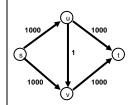
What can we say about the flows and capacity between u and v?

#### Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

#### Performance

 The worst case performance of the Ford-Fulkerson algorithm is horrible



# Better methods of finding augmenting paths

- Find the maximum capacity augmenting nath
  - -O(m<sup>2</sup>log(C)) time algorithm for network flow
- · Find the shortest augmenting path
  - -O(m<sup>2</sup>n) time algorithm for network flow
- · Find a blocking flow in the residual graph
  - O(mnlog n) time algorithm for network flow

#### Problem Reduction

- · Reduce Problem Ato Problem B
  - Convert an instance of Problem A to an instance of Problem B
  - Use a solution of Problem B to get a solution to Problem A
- Practical
  - Use a program for Problem B to solve Problem A
- Theoretical
  - Show that Problem B is at least as hard as Problem A

# Problem Reduction Examples

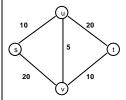
 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem

## **Undirected Network Flow**

- · Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)



Construct an equivalent flow problem

## **Bipartite Matching**

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- · Find a matching as large as possible

# **Application**

- · A collection of teachers
- · A collection of courses
- And a graph showing which teachers can teach which courses

RA 🔘

31

рв 🔘

331

ME O

332

DG O

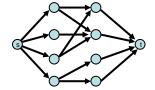
401

AK O

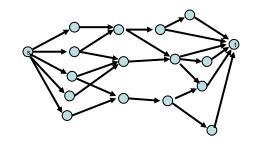
421

# Converting Matching to Network Flow





## Finding edge disjoint paths



Construct a maximum cardinality set of edge disjoint paths