

CSE 421 Algorithms

Richard Anderson Lecture 22 Network Flow

Outline

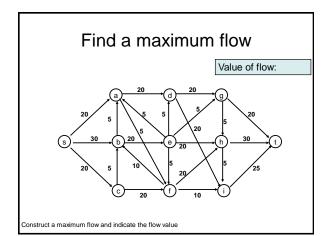
- · Network flow definitions
- · Flow examples
- · Augmenting Paths
- · Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- · Maxflow-MinCut Theorem

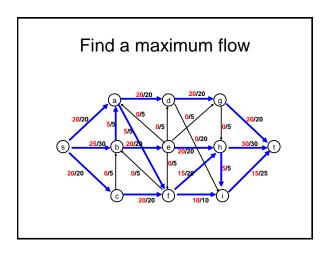
Network Flow Definitions

- Capacity
- · Source, Sink
- · Capacity Condition
- · Conservation Condition
- · Value of a flow

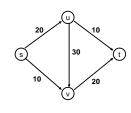
Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible





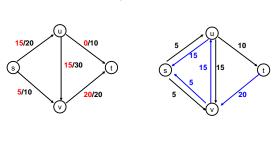
Flow Example



Residual Graph

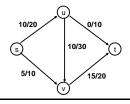
- · Flow graph showing the remaining capacity
- Flow graph G, Residual Graph GR
 - -G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c-f
 - $-G_R$: edge e" from v to u with capacity f

Flow assignment and the residual graph

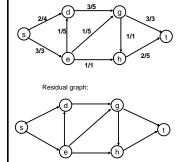


Augmenting Path Algorithm

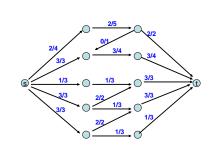
- Augmenting path
 - Vertices v_1, v_2, \dots, v_k
 - $v_1 = s, v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j=1\,\ldots\,k\text{-}1$



Build the residual graph

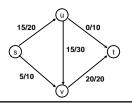


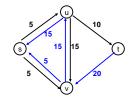
Find two augmenting paths



Augmenting Path Lemma

- Let P = v₁, v₂, ..., v_k be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.





Proof

- · Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

_

_

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R

Find an s-t path P in G_R with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

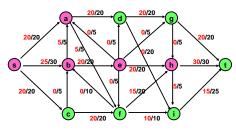
Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S

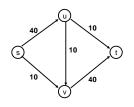
Flow(S,T) <= Cap(S,T)

What is Cap(S,T) and Flow(S,T)

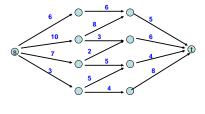
 $S{=}\{s,\,a,\,b,\,e,\,h\},\quad T{\,=\,}\{c,\,f,\,i,\,d,\,g,\,t\}$



Minimum value cut

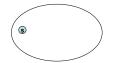


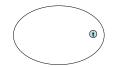
Find a minimum value cut



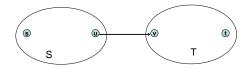
MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_R reachable from s with paths of positive capacity





Let S be the set of vertices in G_R reachable from s with paths of positive capacity



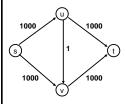
What can we say about the flows and capacity between u and v?

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

Performance

 The worst case performance of the Ford-Fulkerson algorithm is horrible



Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- · Find the shortest augmenting path
 - O(m2n) time algorithm for network flow
- Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow