



## CSE 421 Algorithms



Richard Anderson
Lecture 22
Network Flow



#### Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

#### **Network Flow Definitions**

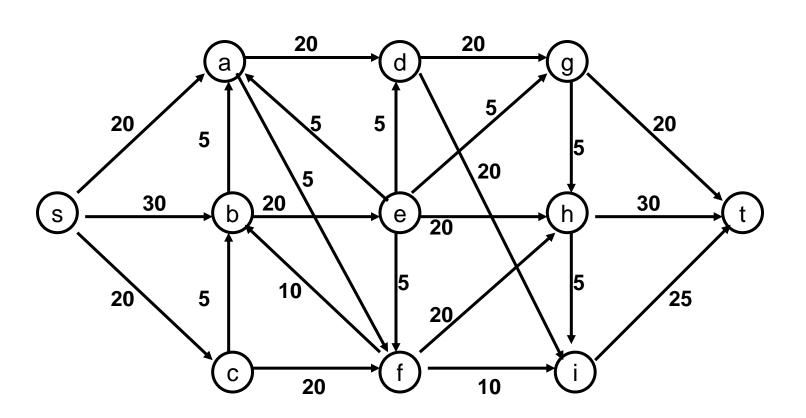
- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow

#### **Network Flow Definitions**

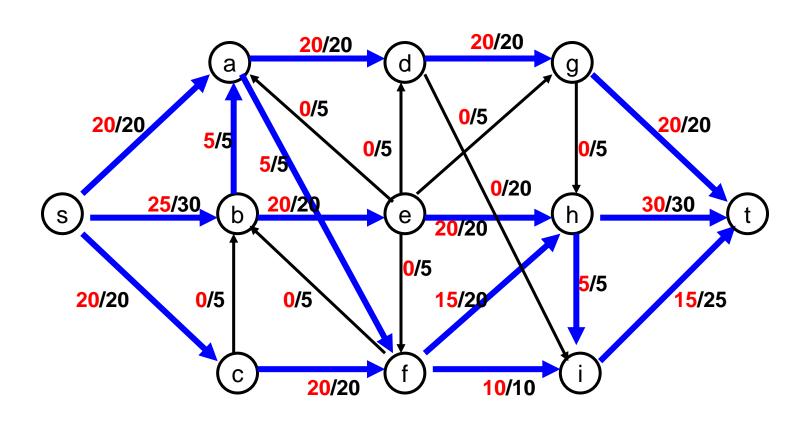
- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
  - $0 \le f(e) \le c(e)$
  - Flow is conserved at vertices other than s and t
    - Flow conservation: flow going into a vertex equals the flow going out
  - The flow leaving the source is a large as possible

#### Find a maximum flow

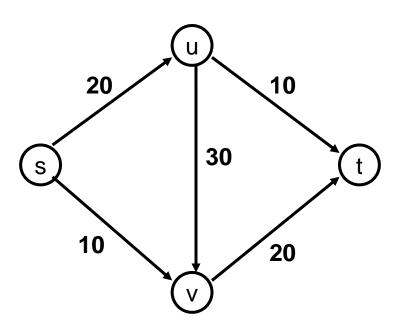
Value of flow:



#### Find a maximum flow



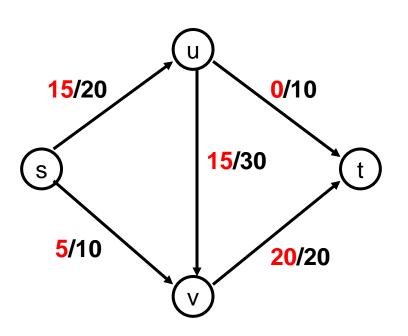
## Flow Example

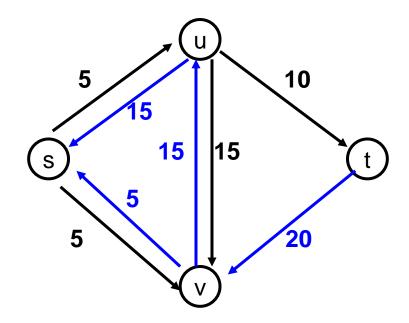


### Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G<sub>R</sub>
  - G: edge e from u to v with capacity c and flow f
  - G<sub>R</sub>: edge e' from u to v with capacity c f
  - G<sub>R</sub>: edge e" from v to u with capacity f

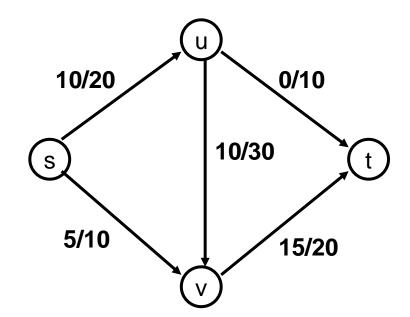
# Flow assignment and the residual graph



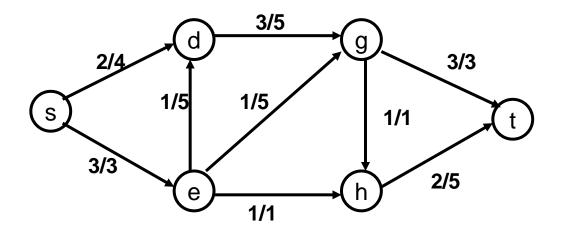


## Augmenting Path Algorithm

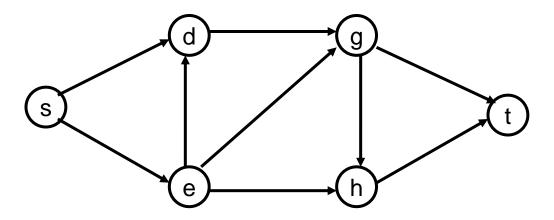
- Augmenting path
  - Vertices  $v_1, v_2, \dots, v_k$ 
    - $V_1 = S$ ,  $V_k = t$
    - Possible to add b units of flow between v<sub>j</sub> and v<sub>j+1</sub> for j = 1 ... k-1



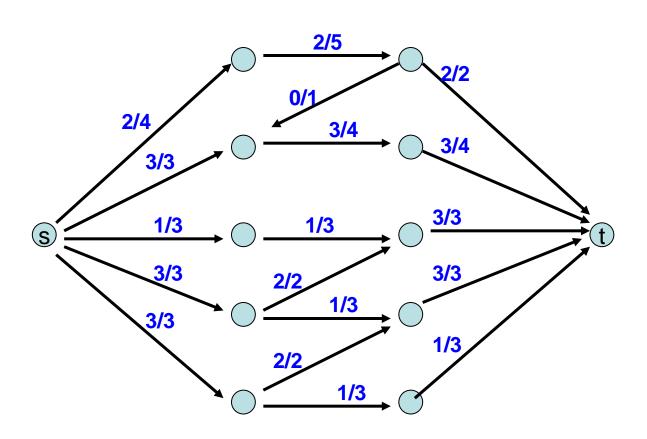
## Build the residual graph



Residual graph:

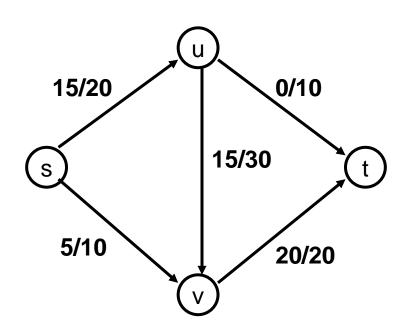


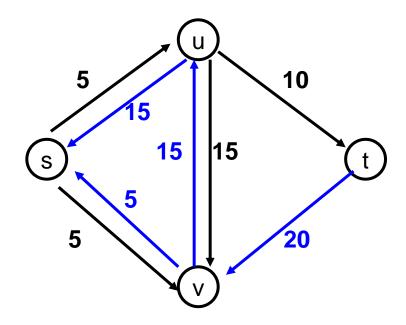
## Find two augmenting paths



## Augmenting Path Lemma

- Let  $P = v_1, v_2, ..., v_k$  be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.





#### Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

\_\_\_

\_\_\_

### Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G<sub>R</sub>

Find an s-t path P in  $G_R$  with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

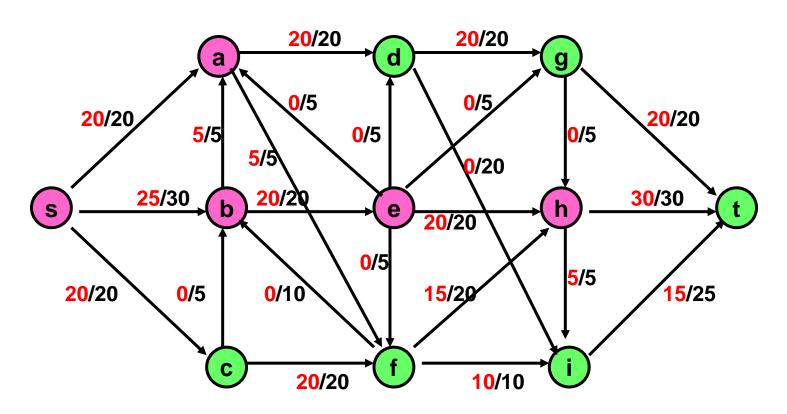
## Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
  - Sum of flows out of S minus sum of flows into S

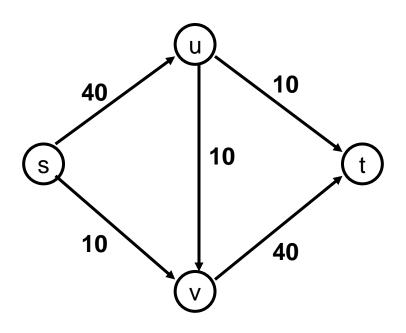
Flow(S,T) <= Cap(S,T)</li>

## What is Cap(S,T) and Flow(S,T)

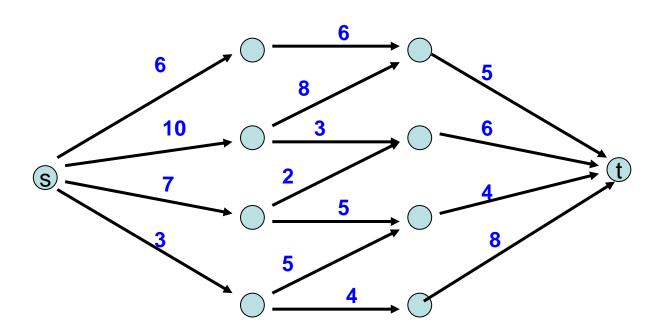
 $S=\{s, a, b, e, h\}, T=\{c, f, i, d, g, t\}$ 



#### Minimum value cut

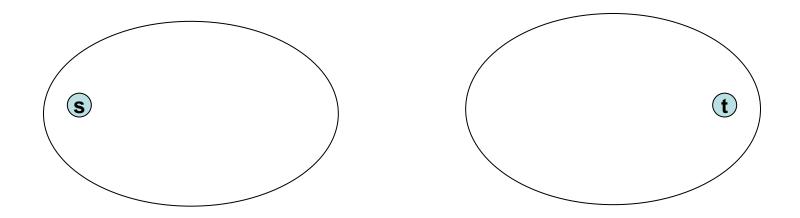


#### Find a minimum value cut

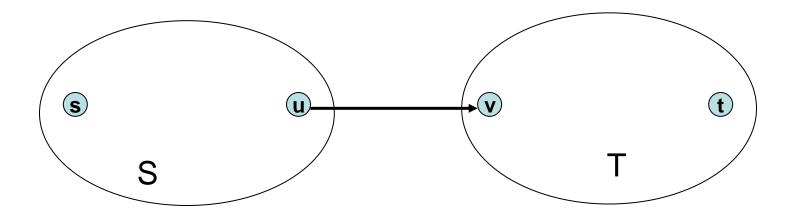


#### MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G<sub>R</sub> reachable from s with paths of positive capacity



## Let S be the set of vertices in $G_R$ reachable from s with paths of positive capacity



What can we say about the flows and capacity between u and v?

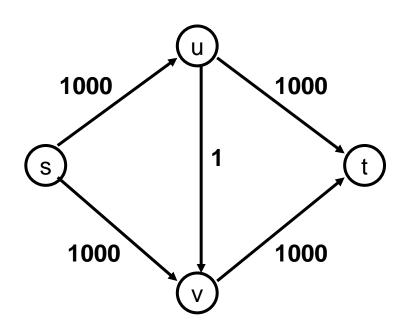
#### Max Flow - Min Cut Theorem

 Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.

 If we want to find a minimum cut, we begin by looking for a maximum flow.

#### Performance

 The worst case performance of the Ford-Fulkerson algorithm is horrible



## Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
  - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
  - O(m<sup>2</sup>n) time algorithm for network flow
- Find a blocking flow in the residual graph
  - O(mnlog n) time algorithm for network flow