CSE 421
Algorithms
Richard Anderson

Lecture 21
Shortest Paths and Network Flow

Shortest Paths with Dynamic
Programming

Shortest Path Problem

+ Dijkstra’s Single Source Shortest Paths
Algorithm
— O(mlog n) time, positive cost edges

» Bellman-Ford Algorithm

— O(mn) time for graphs with negative cost
edges

Lemma

« If a graph has no negative cost cycles,
then the shortest paths are simple paths

 Shortest paths have at most n-1 edges

Shortest paths with a fixed number
of edges

+ Find the shortest path from v to w with
exactly k edges

Express as a recurrence

* Opty(w) = min, [Opt 1(X) + Cy,]
» Opty(w) = 0 if v=w and infinity otherwise

Algorithm, Version 1

foreach w
MI[O, w] = infinity;
MI[O, v] = 0;
fori=1ton-1
foreach w
MI[i, w] = min(M[i-1,x] + cost[x,w]);

Algorithm, Version 3

foreach w
M[w] = infinity;
M[v] = 0;
fori=1ton-1
foreach w
M[w] = min(M[w], min(M[x] + cost[x,w]))

Algorithm, Version 2

foreach w
M[O, w] = infinity;
M[O, v] = 0;
fori=1ton-1
foreach w
MIi, w] = min(M[i-1, w], miny(MIi-1,x] + cost[x,w]))

Correctness Proof for Algorithm 3

+ Key lemma — at the end of iteration i, for
all w, M[w] <= M[i, w];

* Reconstructing the path:
— Set P[w] = X, whenever M[w] is updated from
vertex X

If the pointer graph has a cycle, then
the graph has a negative cost cycle

« If P[w] = x then M[w] >= M[X] + cost(x,w)
— Equal when w is updated
— M[x] could be reduced after update
* Letv,, v,,...v, be acycle in the pointer graph
with (v,,v,) the last edge added
— Just before the update

* M[v] >= M[V;.,] + cost(vj,,, v)) for j <k Vi¢ Va
* Mv,] > M[v,] + cost(vy, v)
— Adding everything up v, & Vs

* 0> cost(vy,V,) + COSt(Vy,V3) + ... + cost(vy, vq)

Negative Cycles

« If the pointer graph has a cycle, then the
graph has a negative cycle

» Therefore: if the graph has no negative
cycles, then the pointer graph has no
negative cycles

Finding negative cost cycles

* What if you want to find negative cost cycles?

Foreign Exchange Arbitrage

usbD

12
% x uSsD
elR O— D cap

056

Network Flow

EUR |CAD
uUsD |------ 0.8 |12
EUR |1.2 |------ 1.6
usD
CAD (0.8 |0.6 |---—--
@
7\
iR O——cap
16
Outline

* Network flow definitions

* Flow examples

» Augmenting Paths

* Residual Graph

* Ford Fulkerson Algorithm
* Cuts

+ Maxflow-MinCut Theorem

Network Flow Definitions
« Capacity
» Source, Sink
» Capacity Condition
» Conservation Condition

* Value of a flow

Flow Example

Flow assignment and the residual
graph

=N
15/30 @
5110 A

Network Flow Definitions

* Flowgraph: Directed graph with distinguished
vertices s (source) and t (sink)
+ Capacities on the edges, c(e) >=0
» Problem, assign flows f(e) to the edges such
that:
- 0<=f(e) <=c(e)
— Flow is conserved at vertices other than s and t
* Flow conservation: flow going into a vertex equals the flow
going out
— The flow leaving the source is a large as possible

Flow Example

20 20

Find a maximum flow

|Va|ue of flow:

e 20 o 20

5,
/ °
5 5

0
h
5

20

5 2
30 20 30
@ b €)% ¢
10 >
20 5 25
\ 2
20

10

Construct a maximum flow and indicate the flow value

Find a maximum flow

20 10

Augmenting Path Algorithm

» Augmenting path
— Vertices vy,Vs,,...,Vy
*V; =S, V=t
« Possible to add b units of flow between Vi and Vis1
forj=1...k-1

N
10/30 @
5/10 A

Find two augmenting paths

2/5

|

0/;

214 3/4

313 o

3/4

15 B, o__13 03’3—.®

3 o 3
13
an O O
212

@) 1/3

1/3

Residual Graph

* Flow graph showing the remaining capacity
» Flow graph G, Residual Graph Gg
— G: edge e from u to v with capacity ¢ and flow f
— Gg: edge e’ from u to v with capacity ¢ — f
— Gg: edge e” from v to u with capacity f

Residual Graph

Build the residual graph

Augmenting Path Lemma

e LetP =vy,V,, ..., v be apath from s to t with
minimum capacity b in the residual graph.

* b units of flow can be added along the path P in
the flow graph.

15/20 0/10

15/30 @

5/10 20120

Proof

+ Add b units of flow along the path P

* What do we need to verify to show we
have a valid flow after we do this?

Ford-Fulkerson Algorithm (1956)

while not done
Construct residual graph Gg
Find an s-t path P in G with capacity b > 0
Add b units along in G

If the sum of the capacities of edges leaving S
is at most C, then the algorithm takes at most
C iterations

