CSE 421 Algorithms

Richard Anderson Lecture 21 Shortest Paths and Network Flow

Shortest Paths with Dynamic Programming

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
 - O(mlog n) time, positive cost edges
- Bellman-Ford Algorithm
 - O(mn) time for graphs with negative cost edges

Lemma

• If a graph has no negative cost cycles, then the shortest paths are simple paths

• Shortest paths have at most n-1 edges

Shortest paths with a fixed number of edges

 Find the shortest path from v to w with exactly k edges

Express as a recurrence

- $Opt_k(w) = min_x [Opt_{k-1}(x) + c_{xw}]$
- Opt₀(w) = 0 if v=w and infinity otherwise

Algorithm, Version 1

foreach w M[0, w] = infinity; M[0, v] = 0;for i = 1 to n-1 foreach w $M[i, w] = min_x(M[i-1,x] + cost[x,w]);$

Algorithm, Version 2

foreach w

M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

foreach w

 $M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]))$

Algorithm, Version 3

foreach w
 M[w] = infinity;
M[v] = 0;
for i = 1 to n-1
 foreach w
 M[w] = min(M[w], min_x(M[x] + cost[x,w]))

Correctness Proof for Algorithm 3

 Key lemma – at the end of iteration i, for all w, M[w] <= M[i, w];

- Reconstructing the path:
 - Set P[w] = x, whenever M[w] is updated from vertex x

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If P[w] = x then M[w] >= M[x] + cost(x,w)
 - Equal when w is updated
 - M[x] could be reduced after update
- Let $v_1, v_2, \dots v_k$ be a cycle in the pointer graph with (v_k, v_1) the last edge added
 - Just before the update
 - $M[v_j] \ge M[v_{j+1}] + cost(v_{j+1}, v_j)$ for j < k
 - $M[v_k] > M[v_1] + cost(v_1, v_k)$
 - Adding everything up
 - $0 > cost(v_1, v_2) + cost(v_2, v_3) + ... + cost(v_k, v_1)$

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

• What if you want to find negative cost cycles?

CAD

1.6

EUR

Network Flow

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow

Flow Example

Flow assignment and the residual graph

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e) \ge 0$
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Flow Example

Find a maximum flow

Value of flow:

Construct a maximum flow and indicate the flow value

Find a maximum flow

Augmenting Path Algorithm

- Augmenting path
 - Vertices v_1, v_2, \dots, v_k

•
$$v_1 = s$$
, $v_k = t$

 Possible to add b units of flow between v_j and v_{j+1} for j = 1 ... k-1

Find two augmenting paths

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c -f
 - $-G_R$: edge e'' from v to u with capacity f

Residual Graph

Build the residual graph

Residual graph:

Augmenting Path Lemma

- Let $P = v_1, v_2, ..., v_k$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations