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Shortest Paths with Dynamic
Programming



Shortest Path Problem

 Dijkstra’s Single Source Shortest Paths
Algorithm

— O(mlog n) time, positive cost edges
» Bellman-Ford Algorithm

— O(mn) time for graphs with negative cost
edges



Lemma

* If a graph has no negative cost cycles,
then the shortest paths are simple paths

« Shortest paths have at most n-1 edges



Shortest paths with a fixed number
of edges

* Find the shortest path from v to w with
exactly k edges



EXpress as a recurrence

* Opt(w) = min, [Opt, 4(X) + Cy,]
* Opty(w) = 0 If v=w and infinity otherwise



Algorithm, Version 1

foreach w
M[O, w] = Infinity;
MIO, v] = 0;
fori=1ton-1
foreach w

M[i, w] = min,(M[i-1,x] + cost[x,w]);



Algorithm, Version 2

foreach w
M[O, w] = Infinity;
MIO, v] = 0;
fori=1ton-1
foreach w

M[i, w] = min(M[i-1, w], min (M[i-1,x] + cost[x,w]))



Algorithm, Version 3

foreach w
M[w] = Infinity;
M[v] = O;
fori=1ton-1
foreach w

M[w] = min(M[w], min (M[x] + cost[x,w]))



Correctness Proof for Algorithm 3

« Key lemma — at the end of iteration I, for
all w, M[w] <= M[i, w];

* Reconstructing the path:

— Set P[w] = x, whenever M[w] is updated from
vertex X



If the pointer graph has a cycle, then
the graph has a negative cost cycle

 If P[w] = x then M[w] >= M[x] + cost(x,w)
— Equal when w is updated
— M[X] could be reduced after update
* Letvy,Vv,,...v, be acycle in the pointer graph
with (v,,v,) the last edge added
— Just before the update

+ M[v] >= M[v,,,] + cost(v,,,, v)) for j < k Vi Vy
* I\/I[Vk] > M[Vl] + COSt(Vl, Vk)
— Adding everything up v, v,

* 0> cost(v,,Vv,) + cost(v,,V3) + ... + cost(v,, v,)



Negative Cycles

* If the pointer graph has a cycle, then the
graph has a negative cycle

* Therefore: If the graph has no negative
cycles, then the pointer graph has no
negative cycles



Finding negative cost cycles

« What if you want to find negative cost cycles?




Foreign Exchange Arbitrage
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Network Flow
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Outline

Network flow definitions
Flow examples
Augmenting Paths
Residual Graph

Ford Fulkerson Algorithm
Cuts

Maxflow-MinCut Theorem



Network Flow Definitions
Capacity
Source, Sink
Capacity Condition
Conservation Condition

Value of a flow
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Flow Example



Flow assignment and the residual
graph
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Network Flow Definitions

* Flowgraph: Directed graph with distinguished
vertices s (source) and t (sink)

« Capacities on the edges, c(e) >=0

* Problem, assign flows f(e) to the edges such
that:
— 0 <=f(e) <=c(e)

— Flow iIs conserved at vertices other than s and t

* Flow conservation: flow going into a vertex equals the flow
going out

— The flow leaving the source is a large as possible



Flow Example




Find a maximum flow

Value of flow:
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Construct a maximum flow and indicate the flow value



Find a maximum flow




Augmenting Path Algorithm

« Augmenting path

—Vertices v,,V,,...,V,
*V; =S, Vv, =t

* Possible to add b units of flow between v; and v,
forj=1... k-1
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Find two augmenting paths




Residual Graph

* Flow graph showing the remaining capacity

* Flow graph G, Residual Graph Gg
— G: edge e from u to v with capacity c and flow f
— Gi: edge e’ from u to v with capacity ¢ —f
— Gi: edge e” from v to u with capacity f



Residual Graph
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Build the residual graph
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Residual graph:




Augmenting Path Lemma

 LetP=v,V,, ..., Vv, beapath from s to t with
minimum capacity b in the residual graph.

* b units of flow can be added along the path P in
the flow graph.
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Proof

« Add b units of flow along the path P

* What do we need to verify to show we
have a valid flow after we do this?



Ford-Fulkerson Algorithm (1956)

while not done
Construct residual graph Gg
Find an s-t path P in G with capacity b > 0
Add b units along in G

If the sum of the capacities of edges leaving S
IS at most C, then the algorithm takes at most
C iterations



