CSE 421
Algorithms

Richard Anderson
Lecture 21
Shortest Paths and Network Flow

Shortest Paths with Dynamic
Programming

Shortest Path Problem

 Dijkstra’s Single Source Shortest Paths
Algorithm

— O(mlog n) time, positive cost edges
» Bellman-Ford Algorithm

— O(mn) time for graphs with negative cost
edges

Lemma

* If a graph has no negative cost cycles,
then the shortest paths are simple paths

« Shortest paths have at most n-1 edges

Shortest paths with a fixed number
of edges

* Find the shortest path from v to w with
exactly k edges

EXpress as a recurrence

* Opt(w) = min, [Opt, 4(X) + Cy,]
* Opty(w) = 0 If v=w and infinity otherwise

Algorithm, Version 1

foreach w
M[O, w] = Infinity;
MIO, v] = 0;
fori=1ton-1
foreach w

M[i, w] = min,(M[i-1,x] + cost[x,w]);

Algorithm, Version 2

foreach w
M[O, w] = Infinity;
MIO, v] = 0;
fori=1ton-1
foreach w

M[i, w] = min(M[i-1, w], min (M[i-1,x] + cost[x,w]))

Algorithm, Version 3

foreach w
M[w] = Infinity;
M[v] = O;
fori=1ton-1
foreach w

M[w] = min(M[w], min (M[x] + cost[x,w]))

Correctness Proof for Algorithm 3

« Key lemma — at the end of iteration I, for
all w, M[w] <= M[i, w];

* Reconstructing the path:

— Set P[w] = x, whenever M[w] is updated from
vertex X

If the pointer graph has a cycle, then
the graph has a negative cost cycle

 If P[w] = x then M[w] >= M[x] + cost(x,w)
— Equal when w is updated
— M[X] could be reduced after update
* Letvy,Vv,,...v, be acycle in the pointer graph
with (v,,v,) the last edge added
— Just before the update

+ M[v] >= M[v,,,] + cost(v,,,, v)) for j < k Vi Vy
* I\/I[Vk] > M[Vl] + COSt(Vl, Vk)
— Adding everything up v, v,

* 0> cost(v,,Vv,) + cost(v,,V3) + ... + cost(v,, v,)

Negative Cycles

* If the pointer graph has a cycle, then the
graph has a negative cycle

* Therefore: If the graph has no negative
cycles, then the pointer graph has no
negative cycles

Finding negative cost cycles

« What if you want to find negative cost cycles?

Foreign Exchange Arbitrage

USD

/X

eur ()

() cap

/\

eur ()

»() cAD

USD [EUR |CAD
USD |------ 0.8 |1.2
EUR 1.2 |--—---- 1.6
CAD (0.8 |0.6 |--—---

Network Flow

o i

I

3 3 |
g1 D " o R [

Outline

Network flow definitions
Flow examples
Augmenting Paths
Residual Graph

Ford Fulkerson Algorithm
Cuts

Maxflow-MinCut Theorem

Network Flow Definitions
Capacity
Source, Sink
Capacity Condition
Conservation Condition

Value of a flow

7N

Flow Example

Flow assignment and the residual
graph

© ()

15/20 0/10 5 f 10
15
15/30 @ @ 15 | 115
5
5/10 | 20/20 5 20
Vv

O

Network Flow Definitions

* Flowgraph: Directed graph with distinguished
vertices s (source) and t (sink)

« Capacities on the edges, c(e) >=0

* Problem, assign flows f(e) to the edges such
that:
— 0 <=f(e) <=c(e)

— Flow iIs conserved at vertices other than s and t

* Flow conservation: flow going into a vertex equals the flow
going out

— The flow leaving the source is a large as possible

Flow Example

Find a maximum flow

Value of flow:

20 20

20 25

©
20

Construct a maximum flow and indicate the flow value

Find a maximum flow

Augmenting Path Algorithm

« Augmenting path

—Vertices v,,V,,...,V,
*V; =S, Vv, =t

* Possible to add b units of flow between v; and v,
forj=1... k-1

O

10/20 m
10/30 @
5/10 | 15/20

O

Find two augmenting paths

Residual Graph

* Flow graph showing the remaining capacity

* Flow graph G, Residual Graph Gg
— G: edge e from u to v with capacity c and flow f
— Gi: edge e’ from u to v with capacity ¢ —f
— Gi: edge e” from v to u with capacity f

Residual Graph

©)
NP RN
Iz

5 a
15
15| 1
5
5 20
Vv

=
fi\

= N

o o

®

Build the residual graph

3/5
d >
2/ @ 3/3

1/5

1/1

3/3 A 4 2/5
e h

1/1

Residual graph:

Augmenting Path Lemma

 LetP=v,V,, ..., Vv, beapath from s to t with
minimum capacity b in the residual graph.

* b units of flow can be added along the path P in
the flow graph.

15

5 A
15
15
15/30)
® \
5 20
5/10 | 20/20 \
\Y

\Y

Proof

« Add b units of flow along the path P

* What do we need to verify to show we
have a valid flow after we do this?

Ford-Fulkerson Algorithm (1956)

while not done
Construct residual graph Gg
Find an s-t path P in G with capacity b > 0
Add b units along in G

If the sum of the capacities of edges leaving S
IS at most C, then the algorithm takes at most
C iterations

