CSE 421
Algorithms
Richard Anderson
Lecture 20
Memory Efficient Dynamic
Programming / Shortest Paths

Longest Common Subsequence

- $\mathrm{C}=\mathrm{c}_{1} \ldots \mathrm{C}_{\mathrm{g}}$ is a subsequence of $\mathrm{A}=\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m}}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

LCS(BARTHOLEMEWSIMPSON, KRUSTYTHECLOWN)
= RTHOWN

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt[j, k] is the length of $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

Optimization recurrence

If $a_{j}=b_{k}, \operatorname{Opt}[j, k]=1+\operatorname{Opt}[j-1, k-1]$
If $\mathrm{a}_{\mathrm{j}}!=\mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=\max (\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}], \operatorname{Opt}[\mathrm{j}, \mathrm{k}-1])$

Dynamic Programming Computation

Code to compute Opt[n, m]
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
for (int j $=0 ; \mathrm{j}<\mathrm{m}$; j++)
if $(A[i]==B[j])$
Opt [i, $]=\operatorname{Opt}[i-1, j-1]+1$;
else if (Opt[$\mathrm{i}-1, \mathrm{j}]>=\operatorname{Opt}[\mathrm{i}, \mathrm{j}-1 \mathrm{l}$) Opt[i, j] := Opt[$\mathrm{i}-1, \mathrm{j}$];
else
Opt[i, j] := Opt[i, j-1];

Storing the path information

$\mathrm{A}[1 . . \mathrm{m}], \mathrm{B}[1 . . n]$
for $\mathrm{i}:=1$ to $\mathrm{m} \quad$ Opt[i, 0$]:=0$;
for $\mathrm{j}:=1$ to $\mathrm{n} \quad \operatorname{Opt}[0, \mathrm{j}]:=0$;
Opt $[0,0]:=0$;
for $\mathrm{i}:=1$ to m

$a_{1} \ldots a_{m}$
for $\mathrm{j}:=1$ to n
if $A[i]=B[j]\{O p t[i, j]:=1+\operatorname{Opt}[i-1, j-1] ;$ Best $[i, j]:=\operatorname{Diag} ;\}$ else if Opt[i-1, $j]>=O p t[i, j-1]$
\{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; \}
else $\quad\{\operatorname{Opt}[i, j]:=\operatorname{Opt}[i, j-1]$, Best $[i, j]:=$ Down; $\}$

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i, and for each j, compute the LCS that has a_{i} matched with b_{j}

Constrained LCS

- $\operatorname{LCS}_{\mathrm{i}, \mathrm{j}}(\mathrm{A}, \mathrm{B})$: The LCS such that
$-a_{1}, \ldots, a_{i}$ paired with elements of b_{1}, \ldots, b_{i}
$-a_{i+1}, \ldots a_{m}$ paired with elements of b_{j+1}, \ldots, b_{n}
- $\mathrm{LCS}_{4,3}($ abbacbb, cbbaa)

Computing the middle column

- From the left, compute $\operatorname{LCS}\left(\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m} / 2}, \mathrm{~b}_{1} \ldots \mathrm{~b}_{\mathrm{j}}\right)$
- From the right, compute LCS $\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$
- Add values for corresponding j's
- Note - this is space efficient

Algorithm Analysis

- $\mathrm{T}(\mathrm{m}, \mathrm{n})=\mathrm{T}(\mathrm{m} / 2, \mathrm{j})+\mathrm{T}(\mathrm{m} / 2, \mathrm{n}-\mathrm{j})+\mathrm{cnm}$

- Addvaluen forcor_

A = RRSSRTTRTS B=RTSRRSTST

Compute $\operatorname{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

j	left	right
0	0	4
1	1	4
2	1	3
3	2	3
4	3	3
5	3	2
6	3	2
7	3	1
8	4	1
9	4	0

Memory Efficient LCS Summary

- We can afford $O(n m)$ time, but we can't afford $O(n m)$ space
- If we only want to compute the length of the LCS, we can easily reduce space to $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Avoid storing the value by recomputing values
- Divide and conquer used to reduce problem sizes

Shortest Paths with Dynamic Programming

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(mlogn) time, positive cost edges
- General case - handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
- O(mn) time for graphs with negative cost edges

Shortest paths with a fixed number of edges

- Find the shortest path from v to w with exactly k edges

Express as a recurrence

- $\operatorname{Opt}_{\mathrm{k}}(\mathrm{w})=\min _{\mathrm{x}}\left[\mathrm{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{C}_{\mathrm{xw}}\right]$
- $\mathrm{Opt}_{0}(\mathrm{w})=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

Algorithm, Version 1
```foreach w M[0,w] = infinity M[0,v]=0; for i=1 to n- foreach w M[i,w] = min```

## Algorithm, Version 3

## foreach w

$M[w]=$ infinity;
$\mathrm{M}[\mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right)$

## Algorithm, Version 2

foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[0, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right)$


## Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i, for all w, M[w] <= M[i, w];
- Reconstructing the path:
- Set $P[w]=x$, whenever $M[w]$ is updated from vertex x

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal when w is updated
- M[x] could be reduced after update
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with $\left(v_{k}, v_{1}\right)$ the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up
- $0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$


## Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles


## Finding negative cost cycles

- What if you want to find negative cost cycles?


Foreign Exchange Arbitrage

$\xrightarrow[1.6]{\mathrm{CAD}}$

