CSE 421

Algorithms

Richard Anderson
Lecture 19
Dynamic Programming

One dimensional dynamic programming: Interval scheduling Opt[j] = max (Opt[j - 1], w $+\operatorname{Opt[~p[j]~])~}$

Announcements

- Homework Deadlines
- HW 7: Wednesday, November 18
- HW 8: Wednesday, November 25
- HW 9: Friday, December 4
- HW 10: Friday, December 11
- Final Exam
- Monday, December 14, 2:30-4:20 pm

Two dimensional dynamic

 programmingK-segment linear approximation
Opt $_{\mathrm{k}}[\mathrm{j}]=\min _{\mathrm{i}}\left\{\right.$ Opt $\left._{\mathrm{k}-1}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}\right\}$ for $0<\mathrm{i}<\mathrm{j}$

Two dimensional dynamic programming

Subset sum and knapsack
Opt [j, K] = max (Opt[j - 1, K], Opt[j - 1, K $\left.\left.-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$
Opt $[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$

Aside: Negative weights in subset sum

- Alternate formulation of Subset Sum dynamic programming algorithm
- Sum $[i, K]=$ true if there is a subset of $\left\{w_{1}, \ldots w_{k}\right\}$ that sums to exactly K , false otherwise
- Sum $[i, K]=\operatorname{Sum}[i-1, K]$ OR Sum $\left[i-1, K-w_{i}\right]$
- To allow for negative numbers, we need to fill in the array between $\mathrm{K}_{\text {min }}$ and $\mathrm{K}_{\text {max }}$

Dynamic Programming Examples

- Examples
- Optimal Billboard Placement
- Text, Solved Exercise, Pg 307
- Linebreaking with hyphenation
- Compare with HW problem 6, Pg 317
- String approximation
- Text, Solved Exercise, Page 309

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Billboard Placement

- Maximize income in placing billboards $-b_{i}=\left(p_{i}, v_{i}\right), v_{i}$: value of placing billboard at position p_{i}
- Constraint:
- At most one billboard every five miles
- Example
$-\{(6,5),(8,6),(12,5),(14,1)\}$

Solution $\mathrm{j}=0 ; \quad / / \mathrm{j}$ is five miles behind the current position // the last valid location for a billboard, if one placed at P[k] for $\mathrm{k}:=1$ to n while ($P[j]<P[k]-5$) $j:=j+1 ;$ $j:=j-1$; Opt [k] $=\operatorname{Max}($ Opt [k-1] , V [k] $+\operatorname{Opt}[\mathrm{j}])$;	

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
- MisMatch(i, j) - number of mismatched characters of b_{j}, when aligned starting with position ins.

Design a Dynamic Programming

 Algorithm for String Approximation- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Solution

for $\mathrm{i}:=1$ to n
Opt[k] $=\mathrm{Opt}[\mathrm{k}-1]+\delta ;$
for $\mathrm{j}:=1$ to $|\mathrm{B}|$
$\mathrm{p}=\mathrm{i}-\operatorname{len}\left(\mathrm{b}_{\mathrm{j}}\right) ;$
Opt[k] $=\min ($ Opt[k], Opt[p-1] $+\gamma \operatorname{MisMatch}(\mathrm{p}, \mathrm{j})$);

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN
Opt[k] = fun(Opt[0], ..,Opt[k-1])

- How is the solution determined from sub problems?

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- $\operatorname{LCS}(\mathrm{A}, \mathrm{B})$: A maximum length sequence that is a subsequence of both A and B

ocurranec	attacggct
occurrence	tacgacca

attacggct
tacgacca

Determine the LCS of the following
strings
BARTHOLEMEWSIMPSON
KRUSTYTHECLOWN

String Alignment Problem

- Align sequences with gaps

CAT TGA AT
CAGAT AGGA

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

Note: the problem is often expressed as a minimization problem
with $\gamma_{\mathrm{yx}}=0$ and $\delta_{x}>0$

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt[$\mathrm{j}, \mathrm{k}]$ is the length of
$\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

Optimization recurrence

If $a_{j}=b_{k}, \operatorname{Opt}[j, k]=1+\operatorname{Opt}[j-1, k-1]$
If $a_{j}!=b_{k}, \operatorname{Opt}[j, k]=\max (\operatorname{Opt}[j-1, k], \operatorname{Opt}[j, k-1])$

Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

Opt[j, k] =

Let $\mathrm{a}_{\mathrm{j}}=\mathrm{x}$ and $\mathrm{b}_{\mathrm{k}}=\mathrm{y}$
Express as minimization

Dynamic Programming
Computation

Storing the path information

A[1..m], B[1..n]
for $\mathrm{i}:=1$ to $\mathrm{m} \quad$ Opt[i, 0$]:=0$;
for $\mathrm{j}:=1$ to $\mathrm{n} \quad \operatorname{Opt}[0, \mathrm{j}]:=0$;
Opt $[0,0]:=0$;
for $\mathrm{i}:=1$ to m

for $\mathrm{j}:=1$ to n
if $A[i]=B[j]\{O p t[[i, j]:=1+$ Opt $[i-1, j-1] ;$ Best $[i, j]:=\operatorname{Diag} ;\}$
else if Opt[i-1, j] >= Opt[i, j-1]
\{ Opt[i, j]:= Opt[[i-1, j], Best[i,j] := Left; \}
else
\{ Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; \}

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Computing LCS in $\mathrm{O}(\mathrm{nm})$ time and $\mathrm{O}(\mathrm{n}+\mathrm{m})$ space

- Divide and conquer algorithm
- Recomputing values used to save space

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i, and for each j, compute the LCS that has a_{i} matched with b_{j}

$$
\begin{gathered}
\text { A = RRSSRTTRTS } \\
\text { B=RTSRRSTST }
\end{gathered}
$$

Compute $\operatorname{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \operatorname{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

A = RRSSRTTRTS B=RTSRRSTST

Compute $\mathrm{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

j	left	right
0	0	4
1	1	4
2	1	3
3	2	3
4	3	3
5	3	2
6	3	2
7	3	1
8	4	1
9	4	0

Computing the middle column

- From the left, compute $\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$
- From the right, compute $\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$
- Add values for corresponding j’s

- Note - this is space efficient

Divide and Conquer

- $A=a_{1}, \ldots, a_{m} \quad B=b_{1}, \ldots, b_{n}$
- Find j such that
$-\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$ and
$-\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$ yield optimal solution
- Recurse

Divide and Conquer
- $A=a_{1}, \ldots, a_{m} \quad B=b_{1}, \ldots, b_{n}$
- Find j such that
$-\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$ and
$-\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$ yield optimal solution
- Recurse

Prove by induction that $\mathrm{T}(\mathrm{m}, \mathrm{n})<=2 \mathrm{cmn}$

Algorithm Analysis

- $\mathrm{T}(\mathrm{m}, \mathrm{n})=\mathrm{T}(\mathrm{m} / 2, \mathrm{j})+\mathrm{T}(\mathrm{m} / 2, \mathrm{n}-\mathrm{j})+\mathrm{cnm}$

Memory Efficient LCS Summary

- We can afford $O(n m)$ time, but we can't afford $O(n m)$ space
- If we only want to compute the length of the LCS, we can easily reduce space to $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Avoid storing the value by recomputing values
- Divide and conquer used to reduce problem sizes

